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Chapter 1

Semantic Domains.
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1.1 Introduction.

The theory of domains was established in order to have appropriate spaces on which to define

semantic functions for the denotational approach to programming-language semantics. There were

two needs: first, there had to be spaces of several different types available to mirror both th ?

type distinctions in the languages and also to allow for different kinds of semantical constructs-

especially in dealing with languages with side effects; and second, the theory had to account for

computability properties of functions-if the theory was going to be realistic. The first need is

complicated by the fact that types can be both compound (or made up from other types) and

recursivle (or self-referential), and that a high-level language of types and a suitable semantics of

types is required to explain what is going on. The second need is complicated by these complications

of the semantical definitions and the fact that it has to be checked that the level of abstraction

reached still allows a precise definition of computability.

This degree of abstraction had only partly been served by the state of recursion theory in 1969
when the senior author of this report started working on denotational semantics in collaboration

with Christopher Strachey. In order to fix some mathematical precision, he took over some defini-

tions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a

simple type theory of higher-type functionals. It was only after giving an abstract characterization

of the spaces obtained (through the construction of bases) that he realized that recursive defini-

tions of types could be accommodated as well-and that the recursive definitions could incorporate

function spaces as well. Though it was not the original intention to find semantics of the so-called
untyped A-calculus, such a semantics emerged along with many ways of interpreting a very large
variety of languages.

A large number of people have made essential contributions to the subsequent developments,

and they have shown in particular that domain theory is not one monolithic theory, but that

there are several different kinds of constructions giving classes of domains appropriate for different

mixtures of constructs. The story is, in fact, far from finished even today. In this report we will
only be able to touch on a few of the possibilities, but we give pointers to the literature. Also,
we have attempted to explain the foundations in an elementary way-avoiding heavy prerequisites

(such as category theory) but still maintaining some level of abstraction-with the hope that such

an introduction will aid the reader in going further into the theory.
The chapter is divided into seven sections. In the second section we introduce a simple class

of ordered structures and discuss the idea of fixed points of continuous functions as meanings for

recursive programs. In the third section we discuss computable functions and effective presentations.

The fourth section defines some of the operators and functions which are used in semantic definitions

and describes their distinguishing characteristics. A special collection of such operators called
powerdomains are discussed in the fifth section. Closure problems with respect to the convex

powerdomain motivate the introduction of the class of bifinite domains which we describe in the

sixth section. The seventh section deals with the important issue of obtaining fixed points for

(certain) operators on domains. We illustrate the method by showing how to find domains D

2



satisfying isomorphisms such as D 5 D x D - D -- D and D a5 N + (D - D). (Such domains are
models of the above-mentioned untyped A-calculus.)

Many of the proofs for results presented below are sketched or omitted. With a few exceptions,
the enthusiastic reader should be able to fill in proofs without great difficulty. For the exceptions
we provide a warning and a pointer to the literature.
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1.2 Recursive definitions of functions.

It is the essential purpose of the theory of domains to study classes of spaces which may be used

to give semantics for recursive definitions. In this section we discuss spaces having certain kinds

of limits in which a useful fixed point existence theorem holds. We will briefly indicate how this

theorem can be used in semantic specification.

1.2.1 Cpo's and the Fixed Point Theorem.

A partially ordered set is a set D together with a binary relation C which is reflexive, anti-symmetric

and transitive. We will usually write D for the pair (D, E) and abbreviate the phrase "partially
ordered set" with the term "poset". A subset M C D is directed if, for every finite set u C M,
there is an upper bound z E M for u. A poset D is complete (and hence a cpo) if every directed
subset M C D has a least upper bound UM and there is a least element LD in D. When D is

understood from context, the subscript on ID will usually be dropped.
It is not hard to see that any finite poset. that has a least element is a cpo. The easiest such

example is the one point poset I. Another easy example which will come up later is the poset 0
which has two distinct elements T and I with I C T. The truth value cpo T is the poset which

has three distinct points, .L,true,false, where .I C true and . C false (see Figure 1.1). To get
an example of an infinite cpo, consider the set N of natural numbers with the discrete ordering
(i.e. n C m if and only if n = m). To get a cpo, we need to add a "bottom" element to N. The
result is a cpo N. which is pictured in Figure 1.1. This is a rather simple example because it does
not have any interesting directed subsets. Consider the ordinal w; it is not a cpo because it has
a directed subset (namely w itself) which has no least upper bound. To get a cpo, one needs to
add a top element to get the cpo wT pictured in Figure 1.1. For a more subtle class of examples
of cpo's, let P 5 be the set of (all) subsets of a set S. Ordered by ordinary set inclusion. PS forms
a cpo whose 1east upper bound operation is just set inclusion. As a last example, consider the set
Q of rational numbers with their usual ordering. Of course, Q lacks the bottom and top elements,

but there is another problem which causes Q to fail to be a cpo: Q lacks, for example. the square
root of 2! However, the unit interval [0, 1] of real numbers does form a cpo.

Given cpo's D and E, a function f : D - E is monotone if f(x) Q f(y) whenever z Q y. If
f is monotone and f(UM) = Uf(M) for every directed M, then f is said to be continuous. A
functin f : D - E is said to be strict if f(.L) = -. We will usually write f : D -- E to indicate
that f is strict. If f,g : D - E, then we say that f ; g if and only if f(x) g_ g(x) for every z E D.
With this ordering, the poset of continuous functions D -- E is itself a cpo. Similarly, the poset
of strict continuous functions D o- E is also a cpo. (Warning: we use the notation f : D - E to
indicate that f is a function with domain D and codomain E in the usual set-theoretic sense. On
the other hand, f E D - E means that f : D - E is continuous. A similar convention applies to

D o-E.)

To get a few examples of continuous functions, note that when f : D --- E is monotone and D
is finite, then f is continuous. In fact, this is true whenever D has no infinite ascending chains.

4
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Figure 1.1: Examples of cpo's.

For example, any monotone function f : N± --. E is continuous. On the other hand, the function

f :W -- 0 which sends the elements of w to I and sends T to T is monotone, but it is not
continuous. Given sets S, T and function f : S --* T we define the extension of f to be the function
f : PS --+ PT given by taking

f'(X) = {f(x) I x E X}

for each subset X C S. The function f" is monotone and, for any collection Xi of subsets of S. we

have

f,(Uxi) = Uf*(Xi).
i i

In particular, f" is continuous. For readers who know a bit about functions on the real numbers,

it is worth noting that a function f : [0, 1] - [0, 1] on the unit interval may be continuous in the

cpo sense without being continuous in the usual sense.
Now, the central theorem may be stated as follows:

Theorem 1 (Fixed Point) If D is a cpo and f : D - D is continuous, then there is a point

fix(f) E D such that fix(f) = f(fix(f)) and fix(f) C x for any x E D such that x = f(x). In other

words, fix(f) is the least fixed point of f.

Proof: Note that .L 1_ f(.L). By an induction on n using the monotonicity of f, it is easy to see

that f"(._) C f"+l(.j_) for every n. Set fix(f) = LJ,, f(.L). By the continuity of ff. it is easy to see

that fix(f) is a fixed point of f. To see that it is the least such, note that i a fixed point of f,
then, for each n, f(.L) g_ f'"(x) = x.

5



1.2.2 Some applications of the Fixed Point Theorem.

The factorial function. As a first illustration of the use of the Fixed Point Theorem, let us consider
how one might define the factorial function fact : N± --+ N±. The usual approach is to say that
the factorial function is a strict function which satisfies the following recursive equation for each
number n:

fact(n) I if n = 0
n*fact(n -1) if n>0.

where .,- : N x N --+ N are multiplication and subtraction respectively. But how do we know that
there is a function fact which satisfies this equation? Define a function

F : (N± o-- N±) --+ (N± o-- N.)

by setting:

if n = 0
F(f)(n)= n*f(n-1) if n>0

I. ifn = I

for each f: N± o--+ N±. The definition of F is not recursive (F appears only on the left side of the
equation) so F certainly exists. Moreover, it is easy to check that F is continuous (but not strict).
Hence, by the Fixed Point Theorem, F has a least fixed point fix(F) and this solution will satisfy
the equation for fact.

Context Free Grammars. One familiar kind of recursion equation is a context free grammar. Let
E be an alphabet. One uses context free grammars to specify subsets of the collection E' of finite
sequences of letters from E. 1 Here are some easy examples:

1.

E ::= I Ea

defines the strings of a's (including the empty string c).

2.

E ::= a bEb

defines strings consisting either of the letter a alone or a string of n b's followed by an a
followed by n more b's.

3.

E ::= EIaa I EE

defines strings of a's of even length.

'The superscripted asterisk will be used in three entirely different ways in this chapter. Unfortunately, all of these
usages are standard. Fortunately, however, it is usually easy to tell which meaning is correct from context.
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We may use the Fixed Point Theorem to provide a precise explanation of the semantics of these

grammars. Since the operations X '-. {e}UX{a}, X '-- {a}U{b}X{b}, and X - {f}U{a}{a}UXX

are all continuous in the variable X, it follows from the Fixed Point Theorem that equations such

as

1. X = {e} U X{a}

2. X = {a} U {b}X{b}

3. X = { U {a}{a} U XX

corresponding to the three grammars mentioned above all have least solutions. These solutions are

the languages defined by the grammars.

The Schroder-Bernstein Theorem. As a set-theoretic application of the Fixed Point Theorem we

offer the proof of the following:

Theorem 2 (Schroder-Bernstein) Let S and T be sets. If f : S - T and g : T - S are injec-

tions, then there is a bijection h : S - T.

Proof: The function Y * (T - nf(S)) U f'(g*(Y)) from PT to PT is easily seen to be continuous
with respect to the inclusion ordering. Hence, by the Fixed Point Theorem, there is a subset

Y = (T - f*(S)) U f*(g*(Y)).

In particular, T - Y = f*(S - g*(Y)) since

T - Y = - ((T - f*(S)) U f(g*(Y)))

= (T - (T - f*(S))) n (T - (f'(g*(Y))))

= f(S) n (T - (f'(g'(Y))))

=f*(s - g'(Y))

Now define h : S -* T by

h(x) =[y if x = g(y) for some y E Y

f(x) otherwise

This makes sense because g is an injection. Moreover, h itself is an injection since f and g are

injections. To see that it is a surjection, suppose y E T. If y E Y, then h(g(y)) = y. If y ' Y, then

y E f*(S - g*(Y)), so y = f(z) = h(x) for some x. Thus h is a bijection. I

1.2.3 Uniformity.

The question naturally arises as to why we take the least fixed point in order to get the meaning. In

most instances there will be other choices. There are several answers to this question. First of all, it

seems intuitively reasonable to take the least defined function satisfying a given recursive equation.

7



But more importantly, taking the least fixed point yieds a canonical solution. Indeed, it is possible
to show that, given a cpo D, the function fixD : (D - D) --* D given by fixD(f) = Un f'(1) is
actually continuous. But are there other operators like fix that could be used? A iefinition is

helpful.

Definition: A fixed point operator F is a class of continuous functions

FD : (D" -D)-- D

such that, for each cpo D and continuous function f : D -- D, we have FD(f) = f(FD(f)). I

Let us say that a fixed point operator F is uniform if, for any pair of continuous functions
f : D - D and g : E -* E and strict continuous function h : D o-+ E which makes the following

diagram commute

f
D D

h 9h

E 'E

we have h(FD(f)) = FE(g). We leave it to the reader to show that fix is a uniform fixed point
operator. What is less obvious, and somewhat more surprising, is the following:

Theorem 3 fix is the unique uniform fixed point operator.

Proof: To see why this must be the case, let D be a cpo and suppose f : D - D is continuous.

Then the set
D' = x D I x C fix(f)}

is a cpo under the order that it inherits from the order on D. In particular, the restriction f' of
f to D' has fixD(f) as its unique fixed point. Now, if i :D' -- D is the inclusion map then the
following diagram commutes

f,
D' D'

D 'D

Thus, if F is a uniform fixed point operator, we must have FD(f) = FD,(f'). But FD,(f') is a fixed
point of f' and must therefore be equal to fixD(f). I

We hope that these results go some distance toward convincing the reader that fix is a reasonable

operator to use for the semantics of recursively defined functions.

8



1.3 Effectively presented domains.

There is a significant problem with the full class cf cpo's as far as the theory of computation goes.
There does not seem to be any reasonable way to define a general notion of computable function

between cpo's. It is easy to see that these ideas make perfectly good sense for a noteworthy
collection of examples. Consider a strict function f : N.± o--. N±. If we take f(n) = _L to mean that
f is undefined at n, then f can be viewed as a partial function on N. We wish to have a concept

of computability for functions on (some class of) cpo's so that f is computable just in case it
corresponds to the usual notion of a partial recursive function. But we must also have a definition
that applies to functionals, that is, functions which may take functions as arguments or return
functions as values. We already encountered a functional earlier when we defined the factorial. To
illustrate the point that there is a concept of computability that applies to such operators, consider,
for example, a functional F : (N± o-+ N±) o-+ Nj_ which takes a function f : Nj_ o--. N _ and computes
the value of f on the number 3. The functional F is continuous and it is intuitively computable.
This intuition comes from the fact that, to compute F(f) on an argument one needs only know

how to compute f on an argument.
Our goal is to define a class of cpo's for which a notion of "finite approximation" makes sense.

Let D be a cpo. An element z E D is compact if, whenever M is a directed subset of D and
x C U M, there is a point y E M such that x C y. We let K(D) denote the set of compact elements
of D. The cpo D is said to be algebraic if, for every x E D, the set M = {xo E K(D) I x0 E x} is
directed and UM = x. In other words, in an algebraic cpo, each element is a directed limit of its
"finite" (compact) approximations. If D is algebraic and K(D) is countable, then we will say that

D is a domain.
With the exception of the unit interval of real numbers, all of the cpo's we have mentioned so far

are domains. The compact elements of the domain Nj. o--* N- are the functions with finite domain
of definition, i.e. those continuous functions f : Nj. o--- N_. such that {n I f(n) $ .L} is finite. As
another example, the collection PN of subsets of N, ordered by subset inclusion is a domain whose

compact elements are just the finite subsets of N.

One thing which makes domains particularly nice to work with is the way one may describe a
continuous function f : D - E between domains D and E using the compact elements. Let G@ be
the set of pairs (xo,0yo) such that xo E K(D) and Yo E K(E) and yo C f(xo). If x E D, then one
may recover from Gf the value of f on x as

f(x) = U{yo I (x 0 , y0 ) E Gf and x0 9; x}.

This allows us to characterize, for example, a continuous function f : PN - PN between uncount.
able cpo's with a countable set G1 . The significance of this fact for the theory of computability is
not hard to see; we will say that the function f is computable just in case Gf is computable (in a
sense to be made precise below).

9



1.3.1 Normal subposets and projections.

Before we give the formal definition of computability for domains and continuous functions, we

digress briefly to introduce a useful relation on subposets. Given a poset (A, ) and x E A, let

Ix = {y E A I y 1x}.

Definition: Let A be a poset and suppose N C_ A. Then N is said to be normal in A (and we

write N -a A) if, for every z E A, the set N n I z is directed. I

The following lemma lists some useful properties of the relation 4.

Lemma 4 Let C be a poset with a least element and suppose A and B are subsets of C.

1. If AoB B C then A4C.

2. If A C B C C and A 4 C then A 4 B.

3. If A 4 C, then I E A.

4. (P(C), 4) is a cpo with {_.L} as its least element. |

Intuitively, a normal subposet NaA is an "approximation" to A. The notion of normal subposet
is closely related to one of the central concepts in the theory of domains. A pair of continuous

functions g : D --- E and f : E --+ D is said to be an embedding-projection pair (g is the embedding
and f is the projection) if they satisfy the following

fog = idD

go f C_ idE

where idD and idE are the identity functions on D and E respectively (in future, we drop the

subscripts when D and E are clear from context) and composition of functions is defined by
(f o g)(x) = f(g(x)). One can show that each of f and g uniquely determines the other. Hence

it makes sense to refer to f as the projection determined by g and refer to g as the embedding
determined by f. There is quite a lot to be said about properties of projections and embeddings

and we cannot begin to provide, in the space of this chapter, the full discussion that these concepts
deserve (the reader may consult Chapter 0 of [GHK*801 for this). However, a few observations will

be essential to what follows. We first provide a simple example:

Example: If f : D- E is a continuous function then there is a strict continuous function

strict : (D - E) - (D o-- E) given by:

strict(f)(x) f(z) if X A I{I if x= _-

The function strict is a projection whose corresponding embedding is the inclusion map inl

(D o- E) '- (D - E). |

10



In our discussion below we will not try to make much of the distinction between f : D o-. E
and incl(f) D -+ E (for example, we may write id: D o-+ D as well as id: D -- D or even
incl(id) - D -- D). From the two equations that define the relationship between a projection and
embedding, it is easy to see that a projection is a surjection (i.e. onto) and an embedding is an
injection (i.e. one-to-one). Thus one may well think of the image of an embedding g : D -- E as a
special kind of sub-cpo of E. We shall be especially interested in the case where an embedding is an
inclusion as in the case of D o--+ E and D --* E. Let D be a cpo. We say that a continuous function

p: D - D is afinitary projection if pop = p C_ id and im(p) = {p(X) I x E D} is a domain. Note, in
particular, that the inclusion map from im(p) into D is an embedding (which has the corestriction
of p to its image as the corresponding projection). It is possible to characterize the basis of im(p)

as follows:

Lemma 5 If D is a domain and p : D -- D is a finitary projection, then the set of compact elements
of im(p) is just im(p) n K(D). Moreover, im(p) n K(D) -a K(D). *
Suppose, on the other hand, that N -a K(D). Then it is easy to check that the function PN : D - D
given by

PN() = U{y E N I y _ x}

is a finitary projection. Indeed, the correspondence N -- pN is inverse to the correspondence

p - im(p) n K(D) and we have the following:

Theorem 6 For any domain D there is an isomorphism between the cpo of normal substructures
of K(D) and the poset Fp(D) of finitary projections on D. I

In particular, if M C Fp(D) is directed then im(UJM) is a domain. This is a fact which will be
significant later. Indeed, the notions of projection and normal subposet will come up again and
again throughout the rest of our discussion.

1.3.2 Effectively presented domains.

Returning now to the topic of computability, we will say that a domain is effectively presented if
the ordering on its basis is decidable and it is possible to effectively recognize the finite normal

subposets of the basis:

Definition: Let D be a domain and suppose d : N -* K(D) is a surjection. Then d is an effective
presentation of D if

1. the set {(m, n) I dm C dn } is effectively decidable, and

2. for any finite set u C N, it is decidable whether {d,, I n E u} -o K(D).

If (D, d) and (E, e) are effectively presented domains, then a continuous function f: D - E is said

to be computable (with respect to d and e) if and only if, for every n E N, the -'t f n I em E f(dn))

is recursively enumerable. |
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Unfortunately, the full class of domains has a serious problem. It is this: there are domains D, E

such that the cpo D - E is not a domain (we will return to this topic in Section 1.6). Since we
wish to use D -* E in defining computability at higher types, we need some restriction on domains
D and E which will insure that D -- E is a domain. There are several restrictions which will work.
We begin by presenting one which is relatively simple. Another will be dscussed later.

Definition: A poset A is said to be bounded complete if A has a least element and every bounded

subset of A has a least upper bound. I

The bounded complete domains are closely related to a more familiar class of cpo's which arise
in many places in classical mathematics. A domain D is a (countably based) algebraic lattice if every
subset of D has a least upper bound. It is not hard to see that a domain D is bounded complete if
and only if the cpo DT which results from adding a new top element to D is an algebraic lattice.
The poset PN is an example of an algebraic lattice. On the other hand, the bounded complete
domain N. o- N± lacks a top element and therefore fails to be an algebraic lattice. All of the
domains we have discussed so far are bounded complete. In particular, we have the following:

Theorem 7 If D and E are bounded complete domains, then D - E is also a bounded complete
domain. Moreover, if D and E have effective presentations, then D -- E has an effective presen-

tation as well. Similar facts hold for D o--+ E.

Proof: (Sketch) It is not hard to see that D --+ E is a bounded complete cpo whenever E is.
To prove that D -+ E is a domain we must demonstrate its basis. Suppose N ,< K(D) is finite

and s : N -- K(E) is monotone. Then the function step(s) : D - F given by taking step(s)(x) =

U {f(Y) I Y E N n I, x} is continuous and compact in the ordering on D - E. These are called step
functions and it is possible to show that they form a basis for D - E. The proof that the poset
of step functions has decidable ordering and finite normal subposets is tedious, but not difficult,
using the effective presentations of D and E. The proof of these facts for D o--- E is essentially the
same since the strict step functions form a basis. I

In the remaining sections of the chapter we will discuss a great many operators like --, and
o -.. We will leave it to the reader to convince himself that all of these operators preserve the

property of having an effective presentation. Further discussion of computability on domains may
be found in [Smy77] and [KT84]. It is hoped that future research in the theory of domains will
provide a general technique which will incorporate computability into the logic whereby we reason
about the existence of our operators. This will eliminate the need to provide demonstrations of
effective presentations. This is a central idea in current investigations but it is beyond our scope

to discuss it further.

12



1.4 Operators and functions.

There are a host of operators on domains which are needed for the purposes of semantic definitions.

In this section we mention a few of them. An essential technique for building new operators
from those which we present here will be introduced below when we discuss solutions of recursive

equations.

1.4.1 Products.

Given posets D and E, the product D x E is the set of pairs (x, y), where x E D and y E E.
The ordering is coordinatewise, i.e. (x, y) C_ (x', y) if and only if z C x' and y Q y'. We define
functions fst : D x E --+ D and snd : D x E-- E given by fst(x,y) = X and snd(x,y) = y. If a
subset L C D x E is directed, then

M = fst(L) = {1 1 3y E E. (x,y) E L}
N = snd(L) = I 3x E D. (zy) E L}

are directed. In particular, if D and E are cpo's, then U L = (U M, U N) and, of course, ID×E =

(-ID, -LE), so D x E is a cpo. Indeed, if D and E are domains, then D x E is also a domain with
K(D x E) = K(D) x K(E). The property of bounded completeness is also preserved by x.

Given cpos D, E, F, one can show that a function f : D x E - F is continuous if and only if it
is continuous in each of its arguments individually. In other words, f is continuous iff each of the

following conditions holds:

1. For every directed set M C D and element e E E, the function f: D - F given by x -

f(x, e) is continuous.

2. For every directed set N C E and element d E D, the function f2 E , F given by y
f(d, y) is continuous.

We leave the proof of this equivalence as an exercise for the reader.

It is easy to see that each of the functions fst and snd is continuous. Moreover, given
any cpo F and continuous functions f : F - D and g: F - E, there is a continuous function
(f,g) : F -. D x E such that

fst 0 (Y, g) = f

snd o (f,g)= g

and, for any continuous function h : F - D x E,

(fst o h, snd o h) = h.

The function (f,g) is given by (fg)(x) = (f(x),g(x)).

There is another, more pictorial, way of stating these equational properties of the operator
(.,.) using a commutative diagram. The desired property can be stated in the following manner:
given any cpo F and continuous functions f : F -- D and g : F -. E, there is a unique continuous

function (f,g) which completes the following diagram:

13



D

(f,g)D xE ------ F

snd I

E

This is referred to as the universal property of the operator x. As operators are given below we
will describe the universal properties that they satisfy and these will form the basis of a system of
equational reasoning about continuous functions. Virtually all of the functions needed to describe
the semantics of (a wide variety of) programming languages may be built from those which are
used in expressing these universal properties!

Given continuous functions f : D -- D' and g : E --+ E', we may define a continuous function
f x g which takes (x,y) to (f(x),g(y)) by setting

f x g = (f o fst,g o snd): D x E - D' x E'.

It is easy to show that idD x id = idDxE and

(f x g) o (f' x g') = (f o f') x (g o g').

Note that we have "overloaded" the symbol x so that it works both on pairs of domains and pairs of
functions. This sort of overloading is quite common in mathematics and we will use it often below.
In this case (and others to follow) we have an example of what mathematicians call a functor.

There is a very important relationship between the operators - and x. Let D. E and F be

cpo's. Then there is a function

apply : ((E - F) x E) - F

given by taking apply(f,x) to be f(x) for any function f : E -- F and element x E E. Indeed. the
function apply is continuous. Also, given a function f : D x E - F, there is a continuous function

curry(f) :D --- (E - F)

given by taking curry(f)(x)(y) to be f(z,y). Moreover, curry(f) is the unique continuous function

which makes the following diagram commute:

fDxE -F

curry(f) x id apply

(E - F) x E

14



This uniqueness condition is equivalent to the following equation:

curry(apply o (h x idE)) = h (1.1)

To see this, suppose equation (1.1) holds and h satisfies

f = apply o (h x id)

then

curry(f) = curry(apply o (h x id)) = h

so the uniquencas condition is satisfied. On the other hand, if curry(f) is uniquely determined by the

diagram above, then equation (1.1) follows immediately from the commutativity of the following

diagram:

f
DxE - F

h x id Iapply

(E--F) x E

for f= apply o (h x idE).

It is often useful to have a multiary notation for products. We write

x()= I

x(D,,... .,D,)=, D .. D_) x D.

and define projections

oni: x(D,,..., D,) "- Di

by

on, = snd o fst' - i

Similarly, one defines a multiary version of the pairing operation by taking () to be the identity on

the one point domain and defining

(fb. .. /f ) = Wf, . .- 1),.).

These multiary versions of projection and pairing satisfy a universal property similar to the one for

the binary product.
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1.4.2 Church's A-notation.

If we wish to define a function from, say, natural numbers to natural numbers, we typically do

so by describing the action of that function on a generic number z (a variable) using previously

defined functions. For example, the squaring function f has the action x I-, x * x where * is the

multiplication function. We may now use f to define other functions: for example, a function g
which takes a function h : N - N to f o h. Continuing in this way we may construct increasingly

complex function definitions. However, it is sometimes useful to have a notation for functions which

alleviates the necessity of introducing intermediate names. This purpose is served by a terminology

known as A-notation which is originally due to Church.

The idea is this. Instead of introducing a term such as f and describing its action as a function.

one simply gives the function a name which is basically a description of what it does with its

argument. In the above case one writes Ax. x *x for f and Ah. f o h for g. One can use this
notation to define g without introducing f by defining g to be the function Ah. (Ax. x * x) o h. The
Ah at the beginning of this expression says that g is a function which is computed by taking its

argument and substituting it for the variable h in the expression (Ax. x * x) o h.

The use of the Greek letter A for the operator which binds variables is primarily an historical ac-
cident. Various programming languages incorporate something essentially equivalent to A-notation
using other names. In mathematics textbooks it is common to avoid the use of such notation by
assuming conventions about variable names. For example, one may write

X2 -2 * x

for the function which takes a real number as an argument and produces as result the square of

that number less its double. An expression such as

X2+X*y+y
2

would denote a function which takes two numbers as arguments-that is. the values of x and y-
and produces the square of the one number plus the square of the other plus the product of the

two. One might therefore provide a name for this function by writing something like:

f(x,y) = x 2 + X*y+y 2 .

So f is a function which takes a pair of numbers and produces a number. But what notation
should we use for the function g that takes a number n as argument and produces the function

n - z 2 + x * n + n 27 For example, g(2) is the function X2 + 2* x + 4. It is not hard to see that this
is closely related to the function curry which we discussed above. Modulo the fact that we defined
curry for domains above, we might have written g = curry(f). Or, to define g directly, we would
write

g = Ay. Ax. X + X * y + y .

The definition of f would need to be given differently since f takes a pair as an argument. We
therefore write:

f = A(X, y). X2 + X * y + y2.

16



There is no impediment to using this notation to describe higher-order functions as well. For

example,
AJ. f(3)

takes a function f and evaluates it on the number 3 and

A4. fof

takes a function and composes it with itself. But these definitions highlight a very critical issue.

Note that both definitions are ambiguous as they stand. Does the function Af. f(3) take. for

example, functions from numbers to reals as argument or does it take a function from numbers to

sets of numbers as argument? Either of these would, by itself, make sense. What we need to do

is indicate somewhere in the expression the types of the variables (and constants if their types are

not already understood). So we might write

A f: N - R. f(3)

for the operator taking a real valued function as argument and

Af: N - PN. f(3)

for the operator taking a PN valued function.

So far, what we have said applies to almost any class of spaces and functions where products

and an operator like curry are defined. But for the purposes of programming semantics, we need a

semantic theory that includes the concept of a fixed point. Such fixed points are guaranteed if we

stay within the realm of cpo's and continuous functions. But the crucial fact is this: the process of

A-abstraction preserves continuity. This is because curry(f) is continuous whenever f is. We may

therefore use the notational tools we have described above with complete freedom and still be sure

that recursive definitions using this notation make sense.

Demonstrating that the typed A-calculus (i.e. the system of notations that we have been de-

scribing informally here) is really useful in explaining the semantics of programming languages is

not the objective of this chapter. However, one can already see that it provides a considerable

latitude for writing function definitions in a simple and mathematically perspicuous manner.

1.4.3 Smash products.

In the product D x E of cpo's D and E, there are elements of the form (x, L) and (JL, y). Ifx 3 _L

or y $ I, then these will be distinct members of D x E. In programming semantics, there are

occasions when it is desirable to identify the pairs (z,_L) and (L,y). For this purpose, there is a

collapsed version of the product called the smash product. For cpo's D and E, tht smash product

D 0 F ;s the set

{(x,y) E D x E I x _ L and y$ IL} U {-LD®E}
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where LDOE is some new element which is not a pair. The ordering on pairs is coordinatewise and

we stipulate that J-DOE C z for every z E D ® E. There is a continuous surjection

smash:D x E- DOE

given by taking

smash(x, y) (x,y) z# J- andx#1

-LDOE otherwise

This function establishes a useful relationship between D x E and D ® E. In fact, it is a projection

whose corresponding embedding is the function unsmash : D ® E - D x E given by

unsmash(z) z if z = (x,y) is a pair

1. (1,-L) if z = .LD@E

Let us say that a function f : D x E -- F is bistrict if f(x, y) - . whenever x = . or y = I. If

f : D x E - F is bistrict and continuous, then g = f o unsmash is the unique strict, continuous

function which completes the following diagram:

DxE

smash \ 9

2
D®E F------F

Iff: D -- D' and g : E -* E' are strict continuous functions, then f ®g = smash o(f x g)ounsmash

is the unique strict, continuous function which completes the following diagram:
fxg

DxE DxE

smash { I smash

D®E ---------- D E

As with the product x and function space -, there is a relationship between the smash product

D and the strict function space o---. In particular, there is a strict continuous function strict-apply

such that for any strict function f, there is a unique strict function strict-curry such that the

following diagram commutes:

D®E f - F

strict.curry(f) ® id I strict.apply

(E o--. F) ® E
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1.4.4 Sums and lifts.

Given cpo's D and E, we define the coalesced sum D ED E to be the set

((D - IiL)}) x {O}) U ((E - {-LED) X {1}) U {±LDeE}

where D - {-LD} and E - I-E} are the sets D and E with their respective bottom elements removed
and iDEE is a new element which is not a pair. It is ordered by taking i-DEE Q z for all z E D ED E
and taking (z, m) Q (y, n) if and only if m = n and z C y. There are strict continuous functions
ini : D o-(D ED E) and inr : E o-(D E E) given by taking

in(x) = (z, 0) if x# J.

-DEE if =

and

inr(z) = { (z,1) if z#J.

-.DeE ifz=JI

Moreover, if f : D o-+ F and g : E o-- F are strict continuous functions, then there is a unique strict
continuous function [f,g] which completes the following diagram:

D
iml j "

D EE---------

inr(
E

The function [f,g] is given by

f ,:) ifz=(z.O)

[f,g](z)= g(y) if z =(y, 1)

.I_ if z = ..

Given continuous functions f: D o- D' and g : E o- E', we define

f S g = [inl o f, inr o g] : D e E o-- ED E'.

As with the product, it is useful to have a multiary notation for the coalesced sum. We define

E() = I
ED(D1,... .,D) = ED(D1 ,... ,Dn_1) ( D,

and

ini = inr o inl-'.
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up

down0 0

0

D D±

Figure 1.2: The lift of a cpo.

One may also define [fi,...,f,4 and prove a universal property.

Given a cpo D, we define the lift of D to be the set DL = (D x {0}) U {L}, where I is a new

element which is not -a pair, together with an partial ordering _ which is given by stipulating that

(z, 0) ;_ (y, 0) when x Q y and I Q z for every z E D.L. In short, Dj. is the poset obtained by

adding a new bottom to D-see Figure 1.2. It is easy to show that Dj. is a cpo if D is. We define

a strict continuous function down : D. o--+ D by

down(z) = ifz=(XO)
-LD otherwise

and a (non-strict) continuous function up D - D.L given by up :z x- (x, 0). These functions are

related by
down o up = idD

up o down _J idD.

These inequations are reminiscent of those which we gave for embedding-projection pairs, but the

second inequation has "1 rather than 7. We will discuss such pairs of functions later. Given cpo's

D and E and continuous function f : D -- E, there is a unique strict continuous function ft which

completes the following diagram:

D

up

ft
D- ------- E

Given a continuous function f : D - E, we define a strict continuous function

f-. = (up o f)t : D.± o-. E1 .
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Given cpo's D and E, we definc: the separated sum D + E to be the cpo D.L ( E.L. By the
universal properties for ED and (-).L, we know that h = [ft, gt] is the unique strict continuous
function which completes the follcwing diagram

DSI ' h
D±E ---------- -F

inr oup {
E

However, h may not be the only continuous function which completes the diagram. Given contin-
uous functions f : D --1- D' and g : E -* E', we define

f +g = f.LEg±: D + E -D + El.

1.4.5 Isomnorphisms and closure properties.

There are quite a few interesting relationships between the operators above which are implied by
the definitions and commutative diagrams. We list a few of these in the following lemmas.

Lemma 8 Let D, E and F be cpa'Is, then

1. DxE ExD,

2. (DxE)xFS Dx(ExF),

Lemma 9 Let D, E and F be cpa's, then

1. DgE 5EOD,

2. (DOE)OFS5D®(EOF),

3. (E 9DF) o--.D -(E o---D) x(E o-- F),

5. D 0(E SF) 9 (D 0E) ED(D® )
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We remarked already that D -- E and D o-* E are bounded complete domains whenever D and

E are. It is not difficult to see that similar closure properties will hold for the other operators we

have defined in this section:

Lemma 10 If D and E are bounded complete domains then so are the cpo's D - E, D o-. E,
DxE, D&E, D+E, DeE, D±.I

Further discussion of the operators defined in this section and others may be found in [Sco82a]
and [Sco82b].
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1.5 Powerdomains.

We now turn our attention to another collection of operators on domains. Just as we have defined

a computable analog to the function space, we will now define a computable analog to the powerset

operation. Actually, we will produce three such operators. In the domain theory literature these
are called powerdornains. If D is a domain we write

" DO for the upper powerdomain of D,

• DO for the convex powerdomain of D, and

" D for the lower powerdomain of D.

The names we use for these operators come from the concepts of upper and lower semi-continuity
and the interested reader can consult [Smy83b] for a detailed explanation. They commonly appear
under other names as well. The convex powerdomain DO was introduced by Gordon Plotkin [P1o76]

and is therefore sometimes referred to as the Plotkin powerdomain. The upper powerdomain Da was
introduced by Mike Smyth [Smy78] and is sometimes called the Smyth powerdomain. For reasons
that we will discuss briefly below, this latter powerdomain corresponds to the total correctness
interpretation of programs. Since Tony Hoare has done much to popularize the study of partial
correctness properties of programs, the remaining powerdomain Db -which corresponds to the

partial correctness interpretation-sometimes bears his name.

1.5.1 Intuition.

There is a basic intuition underlying the powerdomain concept which can be explained through
the concept of partial information. To keep things simple, let us assume that we are given a finite
poset A and asked to form the poset of finite non-empty subsets of A. As a first guess, one might

take the non-empty subsets and order them by subset inclusion. However, this operation ignores
the order structure on A! Think of A as a collection of partial descriptions of data elements: x C y

just in case x is a partial description of y. What should it mean for one non-empty subset of A
to be a "partial description" of another? The axe at least three reasonable philosophies that one
might adopt in attempting to answer this question.

Suppose, for example, that I hold a bag of fruit and I wish to give you information about what

is in the bag. One such description might be

A fruit in the bag is a yellow fruit or a red fruit.

This description is based on two basic pieces of data: "is a yellow fruit" and "is a red fruit". These
are used to restrict the kinds of fruit which are in the bag. A more informative description of this

kind would provide further restrictions. Consider the following example:

A fruit in the bag is a yellow fruit or a cherry or a strawberry.
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It is based on three pieces of data: "is a yellow fruit", "is a cherry" and "is a strawberry". Since
these three data provide further restrictions on the contents of the bag (by ruling out the possibility
of an apple, for example) it is a more informative statement about the bag's contents. On the other

hand,

A fruit in the bag is a yellow fruit or a red fruit or a purple fruit.

is a less informative description because it is more permissive; for instance, it does not rule out
the possibility that the bag holds a grape. Now suppose that u, v are subsets of the poset A from
the previous paragraph. With this way of seeing things, we should say that u is below v if the
restrictions imposed by v are refinements of the restrictions imposed by u: that is, for each y E v,
there is an z E u such that x C y. This is the basic idea behind the upper powerdomain of A.

Returning to the bag of fruit analogy, we might view the following as a piece of information
about the contents of the bag

There is some yellow fruit and some red fruit in the bag.

This information is based on two pieces of data: "is a yellow fruit" and "is a red fruit". However,
these data are not being used as before. They do not restrict possibilities; instead they offer a
positive assertion about the contents of the bag. A more informative description of this kind would

provide a further enumeration and refinement of the contents:

There is a banana, a cherry and some purple fruit in the bag.

This refined description does not rule out the possibility that the bag holds a apple, but it does
insure that there is an cherry. A statment such as

There is some yellow fruit in the bag.

is less informative since it does not mention the presence of red fruit. Now suppose that u. v are
subsets of the poset A. With this way of seeing things, we should say that u is below v if the
positive assertions provided by u are extended and refined by v: that is, for each z E u, there is a

y E v such that z _ y. This is the basic idea behind the lower powerdomain of A.
Now, the convez powerdomain combines these two forms of information. For example, the

assertion

If you pull a fruit from the bag, then it must be yellow or a cherry, and you can pull a
yellow fruit from the bag and you can pull a cherry from the bag.

is this combined kind of information. The pair of assertions means that the bag holds some yellow
fruit and at le.st one cherry, but nothing else. A more refined description might be

If you pull a fruit from the bag, then it must be a banana or a cherry, and you can pull
a banana from the bag and you can pull a cherry from the bag.

A less refined description might be
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If you pull a fruit from the bag, then it must be yellow or red, and you can pull a yellow
fruit from the bag and you can pull a red fruit from the bag.

The reader may be curious about what bags of fruit have to do with programming semantics. The
powerdomains are used to model non-deterministic computations where one wishes to speak about
the set of outcomes o' a computation. How one wishes to describe such outcomes will determine
which of the three powerdomains is used. We will attempt to illustrate this idea later in this
section-when we have given some formal definitions.

1.5.2 Formal definitions.

In order to give the definitions of the powerdomains, it is helpful to have a little information about
the representation of domains using the concept of a pre-order:

Definition: A pre-orderis a set A together with a binary relation F- which is reflexive and transitive.

It is conventional to think of the relation a F" b as indicating that a is "larger" than b (as in
mathematical logic, where 0 - 0 means that the formula ?k follows from the hypothesis 0). Of
course, any poset is also a pre-order. On the other hand, a pre-order may fail to be a poset by not
satisfying the anti-symmetry axiom. In other words, we may have x I- y and y I- x but x $ y. By
identifying elements z, y which satisfy z -y and y F- x, we obtain an induced partially ordered set
from a pre-order (and this why they are called pre-orders). We shall be particularly interested in
a special kind of subset of a pre-order:

Definition: An ideal over a pre-order (A, F-) is a subset s C A such that

1. if u C s is finite, then there is an x E s such that z -y for each y E u, and

2. if x E s and x -y, then y E s. I

In short, an ideal is a subset which is directed and downward closed. If x E A for a pre-order A,

then the set

l y E A I x F- y}

is an ideal called the principal ideal generated by z. To induce a poset from a pre-order, one can
take the poset of principal ideals under set inclusion. The poset of all ideals on a pre-order is

somewhat more interesting:

Theorem 11 Given a countable pre-order (A,f-), let D be the poset consisting of the ideals over
A, ordered by set inclusion. If there is an element I E A such that z I- _L for each x E A, then D
is a domain and K(D) is the set of principal ideals over A.

Proof: Clearly, the ideals of A form a poset under set inclusion and the principal ideal I _. is the
least element. To see that this poset is complete, suppose that M C D and let x = U M. If we can
show that x is an ideal, then it is certainly the least upper bound of M in D. To this end, suppose
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u C x is finite. Since each element of u must be contained in some element of M, there is a finitt

collection of ideals s C M such that u C Us. Since M is directed, there is an element y E M such

that z C_ y for each z E s. Thus u C y and since y is ideal, there is an element a E y such that

b C_ a for each b E u. But a E y g x, so it follows that x is an ideal.

To see that D is a domain, we show that the set of principal ideals is a basis. Suppose Al C D

is directed and Ia C U.M for somea E A. Then a E x for some x E , so Ia C z. Hence Ia

is compact in D. Now suppose x E D and u C A is a finite collection of elements of A such that

Ia C x for each a E u. Then u C x and since x is an ideal, there is an element b E x with b - a

for each a E u. Thus I a C I b for each a E u and it follows that the principal ideals below x form

a directed collection. It is obvious that the least upper bound (i.e. union) of that collection is x.

Since x was arbitrary, it follows that D is an algebraic cpo with principal ideals of A as its basis.

Since A is countable, there are only countably many principal ideals, so D is a domain. I

For any set S, we let P7(S) be the set of finite non-empty subsets of S. We write P1 (S) for

the set of all finite subsets (including the empty set). Given a poset (A, C), define a pre-ordering

on P;(A) as follows,

u 0 v if and only if (Vx E u)(3y E v). x _ y.

Dually, define a pre-ordering 1- on P7(A) by

u - 6 v if and only if (Vy E v)(3z E u). x _ y.

And define 0 on P7(A) by

u 0 v if and only if u - v and u 0 v.

If D is a domain, then let D' be the domain of ideals over (P7(K(D)),-). We call D' the convex

powerdomain of D. Similarly, define DO and D to be the domains of ideals over (T7(K(D)), -) and

(P;(K(D)), 0) respectively. We call DO the upper powerdomain of D and D' the lower powerdomain

of D.
As an example, we compute the lower powerdomain of N±. . Since K(N1. ) = N1. , the lower

powerdomain of N1. is the set of ideals over the pre-order (P7(N±), -b). To see what such an ideal

must look like, note first that u - uU {I} and u J {l1 - u for any u E P;(N1. ). From this fact it

is already possible to see why 0 is usually only a pre-order and not a poset. Now, if u and v both

contain I, then u 0 v iff u D v. Hence we may identify an ideal x E (N±)b with the union Uz of
all the elements in x. Thus (N1. )' is isomorphic to the domain PN of all subsets of N under subset

inclusion.
Now let us compute the upper powerdomain of N1. . Note that if u and v are finite non-empty

subsets of N1. and I E v, then u 0 v. In paticular, any ideal x in (N1. )l contains all of the finite

subsets v of N1, with I E v. So, let us say that a set u E P(N±) is non-trivial if it does not

contain I and an ideal x E (N . )l is non-trivial if there is a non-trivial u E x. Now. if u and v are

non-trivial, then u - v iff u C v. Therefore, if an ideal x is non-trivial, tlltn it is the principal ideal
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generated by the intersection of its non-trivial elements! The smaller this set is, the larger is the

ideal x. Hence, the non-trivial ideals in the powerdomain (ordered by subset inclusion) correspond

to finite subsets of N (ordered by superset inclusion). If we now throw in the unique trivial ideal, we

can see that (N.)l is isomorphic to the domain of sets {N} U *P;(N) ordered by superset inclusion.

Finally, let us look at the convex powerdomain of N1.. If u,v E P;(N. ), then u 0 v iff

1. -EvanduDvor

2. u = v

Hence, if x is an ideal and there is a set u E x with L u, then x is the principal ideal generated

by u. No two distinct principal ideals like this will be comparable. On the other hand, if x is an

ideal with L E u for each u E z, then z C y for an axbitrary ideal y iff U x C U y. Thus the convex

powerdoman of N1. corresponds to the set of finite, non-empty subsets of N unioned with the set

of arbitrary subsets of N. that contain I. The ordering on these sets is like the pre-ordering I-

but extended to include infinite sets.

1.5.3 Universal and closure properties.

If s, t E D4 then we define a binary operation

aU t - {w u U v - wfor some u E s and v E t}.

This set is an ideal and the function 6 : V x D4 - D- is continuous. Similar facts apply when W

is defined in this way for DO and D6 . Now, if z E D, define

44j = {u E -P;(K(D)) I {I0} 0-b u for some compact xo _ x.

This forms an ideal and 1.1 : D - Db is a continuous function. When one replaces -: in this

definition by I-d or I-D, then similar facts apply. Strictly speaking, we should decorate the symbols

W and 4. with indices to indicate their types, but this clutters the notation somewhat. Context

will determine what is intended.

These three operators (.)0, (.) and (.)b may not seem to be the most obvious choices for the

computable analog of the powerset operator. We will attempt to provide some motivation for

choosing them in the remainder of this section. Given the operators W and J. , we may say that a

point x E D for a domain D is an "element" of a set s in a powerdomain of D if jx4 W s = s. If s

and t lie in a powerdomain of D, then . is a "subset" of t if sw t = t. Care must be taken, however,

not to confuse "sets" in a powerdomain with sets in the usual sense. The relations of "element"

and "subset" described above will have different properties in the three different powerdomains.

Moreover, it may be the case that s is a "subset" of t without it being the case that 5 C t!
To get some idea how the powerdomains are related to the semantics of non-deterministic

programs, let us discuss non-deterministic partial functions from N to N. As we have noted before,

there is a correspondence between partial functions from N to N and strict functions f : N. o- N.L.

These may be thought of as the meanings of "deterministic" programs, because the output of
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a program is uniquely determined by its input (i.e. the meaning is a partial function). Suppose,
however, that we are dealing with programs which permit some finite non-determinism as discussed

in the section on non-determinism in the chapter of Peter Mosses. Then we may wish to think of a

program as having as its meaning a function f : N.L - P(NtL) where P is one of the powerdomains.
For example, if a program may give a 1 or a 2 as an output when given a 0 as input, then we
will want the meaning f of this program to satisfy f(0) = ill U 12F = 11,21. The three different

powerdomains reflect three different views of how to relate the various possible program behaviors
in the case of divergence. The upper powerdomain identifies program behaviors which may diverge.
For example, if program P can give output 1 or diverge on any of its inputs, then it will be
identified with the program Q which diverges everywhere, since 41,11 = .L = 4_. in (N )4.
However, program a P2 which always gives 1 as its output (on inputs other than 1) will not have
the same meaning as P1 and Ax. 1. On the other hand, if the lower powerdomain is used in the
interpretation of these programs, then P and P2 will be given the same meaning since 41, ._ = I1
in (Nj.). However, P and P2 will not have the same meaning as the always divergent program
Q since 41, ._ y_ I in the lower powerdomain. Finally, in the convex powerdomain, none of the
programs P1, P2, Q have the same meaning since 11,11, ill and 4-I are all distinct in (N±) .

To derive properties of the powerdomains like those that we discussed in the previous section
for the other operators, we need to introduce the concept of a domain with binary operator.

Definition: A continuous algebra (of signature (2)) is a cpo E together with a continuous binary
function * : E x E - E. We refer to the following collection of axioms on * as theory TO:

1. associativity: (r * s) * t = r * (s * t)

2. commutativity: r * s = 3 * r

3. idempotence: s * s = s.

(These are the well-known semi-lattice axioms.) A homomorphism between continuous algebras D
and E is a continuous function f : D -- E such that f(s * t) = f(s) * f(t) for all st E D. I

It is easy to check that, for any domain D, each of the algebras DO, DU and D' satisfies T'.

However, DO is the "free" continuous algebra over D which satisfies TO:

Theorem 12 Let D be a domain. Suppose (E, *) is a continuous algebra which satisfies TO. For
any continuous f : D - E, there is a unique homomorphism ext(f) : D - E which completes the
following diagram:

D

4.1f

ext (f)
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Proof. (Hint) If u = {xl,... ,z} E s E DO, and fi is the principal ideal generated by u, then

define ext(f)(fi) = f(z4) * * f(X,). This function has a unique continuous extension to all of D"

given by ext(f)(s) = L{ext(f)(f) I u E s). |

Now, consider the following axiom:

40. s Wt C:s.

Let T be the set of axioms obtained by adding axiom 40 to the axioms in V. Similarly, let T be

obtained by adding the axiom

40. s _ sWt

to the axioms in TO. The point is this: Theorem 12 still holds when Db and TO are replaced by V

and TO respectively, or by D' and T respectively.

As was the case with the smash product and lift operators, a diagram like the one in Theorem 12

gives rise to another important operation on functions. If f : D -- E is a continuous function, then

there is a unique homomorphism f0 which completes the following diagram:

f
D E

Namely, one defines fO = ext(J.F o f). Of course, there are functions fl and f" with similar

definitions.

Two of the powerdomains preserve the property of bounded completeness:

Lemma 13 If D is a bounded complete domain then so are DO and D6 .

Proof: We leave for the reader the exercise of showing that a domain D is bounded complete if

and only if every finite bounded subset of its basis has a least upper bound. To see that D' is

bounded complete, just note that, for any pair of sets u, v E Py(K(D)), the ideal generated by

their union u U v is the least upper bound in D for the ideals generated by u and v. To see that

D is bounded complete, suppose u, v, w E P;(K(D)) with w F-1 u and w 0 v. Let w' be the set of

elements z E K(D) such that there are elements z E u and y e v and z is the least upper bound

of {x, y}. The set w' is non-empty because {u,v} is bounded. Moreover, it is not hard to see that

w - w' and w' - u and w' i- v. Hence the ideal generated by w' is the least upper bound of the

ideals generated by u and v.1
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1.6 Bifinite domains.

Of the operators that we have discussed so far, only the convex powerdomain (.)4 does not take
bounded complete domains to bounded complete domains. To see this in a simple example, consider

the finite poset T x T and the following elements of x(T x T):

u = {(L,true), (L,false)}

v = {(true,1), (false,-)}
u' = {(true, true), (false, false)}

v/ = {(true, false), (false, true)}

It is not hard to see that u' and v' are minimal upper bounds for {u, v} with respect to the ordering
0- . Hence no least upper bound for {u, u'} exists and (T x T)4 is therefore not bounded complete. In
this section we introduce a natural class of domains on which all of the operators we have discussed
above (including the convex powerdomain) are closed. This class is defined as follows:

Definition: Let D be a cpo. Let M be the set of finitary projections with finite image. Then D
is said to be bifinite if M is countable, directed and UM = id. I

The bifinite cpo's are motivated, in part, by considerations from category theory and the definition
above is a restatement of their categorical definition. They were first defined by Plotkin [Plo76]
(where they are called "SFP-objects") and the term "bifinite" is due to Paul Taylor. Bifinite

domains (and various closely related classes of cpo's) have also been discussed under other names
such as "strongly algebraic" [Smy83a, Gun86] and "profinite" [Gun87] domains.

1.6.1 Plotkin orders.

As we suggested earlier, the image of a finitary projection p : D - D on a domain D can be
viewed as an approximation to D. A bifinite domain is one which is a directed limit of its finite
approximations. But what is this really saying about the structure of D? First of all, it follows from
properties of finitary projections that we mentioned earlier that whenever p : D - D is a finitary

projection and im(p) is finite, then im(p) 9 K(D). From this, together with the fact that the set
Ml is directed and UM = id, it is possible to show D is a domain with U{im(p) I p E M } as its
basis. We may now use the correspondence which we noted in Theorem 6 to provide a condition

on the basis of a domain which characterizes the domain as being bifinite. Recall that N 4 A for

posets N and A if N nl I x is directed for every x E A.

Definition: A poset A is a Plotkin order if, for every finite subset u C A, there is a finite set N < A
with u C N. I

Theorem 14 The following are equivalent for any cpo D.

1. D is bifinite.
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Figure 1.3: Posets that are not Plotkin orders.

2. D is a domain and K(D) is a Plotkin order. I

To get some idea what a Plotkin order looks like, it helps to have a definition. Given a poset A

and a finite set u C A, an upper bound z for u is minimal if, for any upper bound y for u, y 1_ z

implies y = z. A set v of minimal upper bounds for u is said to be complete if, for every upper

bound x for u, there is a Y E v with y g z. Now, let A be a Plotkin order and suppose u C A is

finite. Then there is a finite N - A with u C N. The set N must contain a complete set of minimal

upper bounds for u (why?). This shows the first fact about Plotkin orders: every finite subset has

a complete set of minimal upper bounds. This rules out configurations like the one pictured in

Figure 1.3a where the pair of points indicated by closed circles do not have such a complete set

of minimal upper bounds. But the set N is finite so we have our second fact: every finite subset

must have a finite complete set of minimal upper bounds. This rules out configurations like tlkone

pictured in Figure 1.3b where the pair of points indicated by closed circles has a complete set of

minimal upper bounds but not a finite one. However, having finite complete sets of minimal upper

bounds for finite subsets is not a sufficient condition for characterizing the Plotkin orders. '. j see

why, let A be a poset which has finite complete sets of minimal upper bounds for finite subsets. If

u C A is finite, let

U(u) = {x I x is the minimal upper bound for some v C u}.

Now, if u C N -a A, then U(u) g N. Hence, U"'(u) C N for each n. If N is finite, then there must be

an n for which U'n(u) = Un+l(u). This is a third fact about Plotkin orders: for each finite u C A.
U, (u) = UU (U(u) is finite. To see what can go wrong, note that U(u) is infinite when u is the

pair of points indicated by closed circles in Figure 1.3c.

1.6.2 Closure properties.

Proposition 15 A bounded complete domain is bifinite.
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Proof: Suppose D is bounded complete and u C K(D) is a finite subset of the basis of D. Let

N ={x I x is the least upper bound of a finite subset of u }.

Note that N is finite; we claim that N o K(D). Suppose z is the least upper bound of a finite set
v C K(D). Since D is algebraic, there is a directed subset M C K(D) such that z = U.1M. But
the elements of v are compact. Hence, for every y E v, there is a y' E M with y _ y'. Since M
is directed, there is some z E M which is an upper bound for v. Now, z C z so x = z and x is
therefore compact. This shows that N g K(D). Suppose v C N is bounded, then the least upper
bound of v is the same as the least upper bound of the set {x E u I x C y for some y E v} so the
least upper bound of v is in N. Now, if z E K(D), then S = (J x) n N is bounded. Since S has a
least upper bound which, apparently, lies in S, we conclude that S is directed. I

Theorem 16 If D is bifinite, then the poset Fp(D) of finitary projections on D is an algebraic
lattice and the inclusion map i : Fp(D) -1. (D - D) is an embedding.

Proof: (Sketch) One uses Theorem 6 to show that Fp(D) is an algebraic lattice. Suppose
f : D -- , D is continuous. Let

S = {z E K(D) I x Q f(x)}.

One can show that there is a least set Nf such that S1 C N! 4 K(D). This set determines a finitary
projection PN as in the discussion before Theorem 6. On the other hand, if f : D -- D is a finitary
projection then Nf = im(f) n K(D) and f = pN,. The remaining steps required to verify that
f i.- N1 is a projection are straight-forward. I

Lemma 17 If D and E are bifinite domains, then so are the cpo's D - E, Do- E. Dx E, DE.
D + E, D E E, D±, DO, Dd and D' .

Proof: We will outline proofs for two sample cases. We begin with the function space operator.
Suppose p : D - D and q : E - E are finitary projections. Given a continuous function f : D - E,
define O(q,p)(f) = qofop. The function e(q,p) defines a finitary projection on D - E. Moreover,
if p and q have finite images, then so does O(q,p). If we let Ml be the set of functions ®(q,p) such
that p and q are finitary projections with finite image, then it is easy to see that UM = id. Hence
D - E is bifinite. We will encounter the function E again in the next section.

To see that DO is bifinite, one shows that the set

MA = {pO I p E Fp(D) and im(p) is finite}

is directed and has the identity as its least upper bound. The functions in A4 are themselves finitary

projections with finite images so DO is bifinite. I

One may conclude from this lemma that the bifinite domains have rather robust closure prop-
erties. But there is something else about bifinite domains which makes them special. They are the
largest class of domains which are closed under the operators listed in the Lemma. fit fact, there is

the following:
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Theorem 18 If D and D - D are domains, then D is bifinite. 3

The theorem is due to Smyth and its 'proof may be found in [Smy83a]. It is carried out by

analyzing each of the cases pictured in Figure 1.3 and showing that if D --* D is not a domain, then

D cannot be bifinite. A similar result for the bounded complete domains can be found i , [Gun86].
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1.7 Recursive definitions of domains.

Many of the data types that arise in the semantics of computer programming languages may be

seen as solutions of recursive domain equations. Consider, for example, the equation T 2 T + T (of

course, this is an isomorphism rather than an equality, but let us not make much of this distinction

for the moment). How would we go about finding a domain which solves this equation? Suppose we

start with the one point domain To = I as the first approximation to the desired solution. Taking

the proof of the Fixed Point Theorem as our guide, we build the domain T = T0 + To = I + I as the

second approximation. Now, there is a unique embedding eo : To - T so this gives a precise sense

in which To approximates T1 . The next approximation to our solution is the domain T2 = T + T

and again there is an embedding el = eo + eo : T, --- T2. If we continue along this path we build a

sequence
TO o T1e T2--...

of approximations to the full simple binary tree. To get a domain, we must add limits for each of

the branches. The resulting domain (i.e. the full simple binary tree with the limit points added)

is, indeed, a "solution" of T 1 T + T. This is all very informal, however; how are we to make this

idea mathematically precise and, at the same time, sufficiently general?

1.7.1 Solving domain equations with closures.

In this section we discuss a technique for solving recursive domain equations by relating domains

to functions by the "image" map (im) and then using the ideas of the previous section to solve

equations. There are two (closely related) ways of doing this which we will illustrate. The first of

these is based on the following concept:

Definition: Let D and E be cpo's. A continuous function r : D - E is a closure if there is a
continuous function s : E - D such that r o s = id and s o r D id. I

By analogy with the notion of a finitary projection, we will say that a function r : D - D is a
finitary closure if r o r = r : id and im(r) is a domain. In the event that D is a domain, the

requirement that im(r) be a domain is unnecessary because we have the following:

Lemma 19 If D is a domain and r : D - D satisfies the equation r o r = r :_ id, then im(r) is a

domain. I

The Lemma is proved by showing that {r(x) I x E K(D)} forms a basis for im(r). We will say that
a domain E is a closure of D if it is isomorphic to im(r) for some finitary closure r on D. We let
Fc(D) be the poset of finitary closures r : D - D.

Lemma 20 If D is a domain, then Fc(D) is a cpo. |

Definition: Let us say that an operator F on cpo's is representable over a cpo U if and only if

there is a continuous function RF which completes the following diagram (up to isomorphism):
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F

Cpo's - CpO's

imI RF im

Fc(U) --- Fc(U)

i.e. im(RF(r)) 5 F(im(r)) for every closure r. I

This idea extends to multiary operators as well. For example, the function space operator - is

representable over a cpo U if there is a continuous function

R: Fc(U) x Fc(U) -- Fc(U)

such that, for any r, s E Fc(U),

iI-(R(ra)) 2 im(r) -- im(s)

A operator (F,...,F) is defined to be representable if each of the operators Fi is. Note that a

composition of representable operators is representable.

Theorem 21 If an operator F is representable over a cpo U, then there is a domain D such that

D 5 F(D).

Proof: Suppose RF represents F. By the Fixed Point Theorem, there is an r E Fc(U) such that

r = RF(r). Thus irn(r) = im(RF(r)) - F(im(r)) so ir(r) is the desired domain. I

Now we know how to solve domain equations. For example, to solve T 2 T + T we need to find
a domain U and continuous function f : U --- U which represents the operator F(X) = X + X.

But we are still left with the problem of finding a domain over which such operations may be

represented! The next step is to look at a simple structure which can be used to represent several

of the operations in which we are interested.

Given sets S and T, let Ts be the set of (all) functions from S into T. If T is a cpo, then Ts
is also a cpo under the pointwise ordering. Now, it is not hard to see that the domain equation

X , X x IT (where 1T is the two point lattice) has, as one of its solutions, the cpo (IT)N , In

fact, this cpo is isomorphic to the algebraic cpo PN of subsets of N which we discussed in the first

section. It is particularly interesting because of the following:

Theorem 22 For any (countably based) algebraic lattice L, there is a closure r : PN - L.

Proof: Let 10, 11,12,... be an enumeration of the basis of L. Given S C N, let r(S) = U{l, I n E S}.

If I E L, let s(l) = {n I I, C 1}. We leave for the reader the (easy) demonstration that r,s are

continuous with r o s = id and s o r "1 id. 1
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Structures such as PN are often referred to as universal domains because they have a rich

collection of domains as retracts. In the remainder of this section we will discuss two more similar

constructions and show how they may be used to provide representations for operators.

Unfortunately, there is no representation for the operator F(X) = X + X over PN. However,

there are some much more interesting operators which are representable over PN. In particular,

Lemma 23 The function space operator is representable over PN.

Proof: Consider the algebraic lattice of functions PN -- 'PN. By Theorem 22, we know that there

are continuous functions
4... :N.(PN - 'PN)

%F- (PN - "PN) -- 'PN

such that 4o- o I.. = id and f. o$1. _ id. Now, suppose r,s E Fc(PN) (that is, r o r = r J id

and s o s = s _J id). Given a continuous function f : PN --+ PN, let O(s, r)(f) = s af o r and define

R_(r, s) = 'P. o e(s, r) o 4 .

To see that this function is a finitary closure, we take z E 7'N and compute

(R_ (r, s) o R_(r, a))(z)

(T_ o e(s, r) o o)('(sa( (x)) o r)
(T_ o E(s, r) o 0- o %_P)(s o (1_(x)) o r)

o (E a e(s, r))(s o (4D_(x)) o r)

a s) o (t_(x)) o (r o r))

* -_(s o (4'_-(x)) o r)

R-_(r, s)(x)

and

R-_(r,s)(x) : -_(s o (4'_(z))o r) _ T -_(4'._(z)) _ x.

Thus we have defined a function,

R- : Fc(PN) x Fc(PN) -- Fc(PN)

which we now demonstrate to be a representation of the function space operator.

Given r, s E Fc(PN), we must show that there is an isomorphism

im(R(r, s)) -5 ira(r) - ira(s)

for each r,s E Fc(P'N). Now, there is an evident isomorphism between continuous functions

f : im(r) - im(s) and continuous functions g : PN --- PN such that g = s o g o r. We claim that

%F- cuts down to an isomorphism between such functions and the sets in the image of R_(r.s).

Since 40- o T- = id, we need only show that (T-... o 4)(z) = x for each z = R_(r,s)(x). But if

x = (Ps o (4'(x)) o r)
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then

('P.._o .)(x) = ('P...o $.._o 'P.)(so0( _.(x))o0r)

= o (s o r)

- z

Hence im(R.(r,s)) - im(r) --, im(s) and we may conclude that R-- represents - over PN. I

A similar construction can be carried out for the product operator. Suppose

@xPN -+(PN x PN)
Tx :(N x PN) - PN

such that ' x o ' = id and %F o §x Q id. For r,s E Fp(PN) define

Rx(r,s) = x o (r x s) o

We leave for the reader the demonstration that this makes sense and Rx represents the product
operator.

Suppose that L is an algebraic lattice. Then there are continuous functions

PL N -* PN

FL :PN -PN

such that IL 0 %FL = id and T1/L o IL -- id. Then the function

RL(r,s) = TLo 4L

represents the constant operator X i-o L because im(PL 0 4L) L. A similar argument can be

used to show that a constant operator X :-- D is representable over a domain U if and only if D is
a closure of U.

1.7.2 Modelling the untyped A-calculus.

It is tempting to try to solve the domain equation D - D - D by the methods just discussed.
Unfortunately, the equation I - I -- I (corresponding to the fact that on a one-point set there is
only one possible self-map) shows that there is no guarantee that the result will be at all interesting.
There has to be a way to build in some nontrival structure that is not wiped out by the fixed-point
process. Methods are described in [Sco76a, Sco80a], but the following, from [Sco76b, Sco8Ob], is
more direct and more general.

Lemma 24 Let U be a non-trivial cpo. If the product and function space operators can be repre-
sented over U, then there are non-trivial domains D and E such that E :- E x E and D ! D - E.

Proof: We can represent F(X) = U x X x X over U, so there is a closure A of U such that
A2 UxAx A. Thus UxA _Ux(U:<AxA) _ (UxA)x(UxA). So E = Ux .4 is non-trivial
and E :- E x E. Now, E is a closure of U so G(X) = X - E is representable over U. Hence there
is a cpo D 2- D -- E. This cpo is non-trivial because E is. I
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Theorem 25 If U is a non-trivial domain which represents products and function spaces, then

there is a non-trivial domain D such that D S D x D Si D -- D and D is the image of a closure

on U.

Proof: Let D and E be the domains given by Lemma 24. Then

D xD -5(D --, E)x×(D -- E) L - (E xE) V--+ E -5D

and
D --+ D 5_N D --+ ( D - E ) - (D x D) ) - E _' D --- E - D.|

We note, in fact, that D will have PN itself represented by a closure on U. Hence, to get a

non-trivial solution for D -! D --. D ! D x D, take U in the theorem to be PN. What good is

such a domain? The answer is that a D satisfying these isomorphisms is a model for a very strong
A-calculus. If we expand the syntax of A-calculus given in Section 5.3 of the chapter by Mosses to

allow pairings, we would have:

E ::= (Ax. E) I E1 (E2) Ix I pair I fst I snd

Now, Mosses points out that under the semantic function he defines, many different expressions
axe mapped into the same values. We can say that the model satisfies certain equations. In
particular, under the isomorphisms obtained in our theorems above, the following equations will

be satisfied:

1. (Ax. E) = (Ay. [y/x]E) (provided y is not free in E)

2. (Ax. E)(E') = [E'/x]E

3. (Ax. E(z)) = E (provided z is not free in E)

4. fst(pair(E)(E'))= E

5. snd(pair(E)(E')) = E'

6. pair(fst(E))(snd(E)) = E

In these equations, the third and sixth especially emphasize the isomorphisms D = D - D and
D = D x D. There are models where D- D is represented by a closure on D (as is D x D)

but where this is not an isomorphism. It follows that the special equations are independent of the

others.
In rRev87] the question is brought up whether we can add to the above equations one relating

functional abstraction with pairing. In particular, the following would be interesting:

pair(x)(y) = (Az. pair(x(z))(y(z))).

This equation identifies the primitive pairing with what could be called pointwise pairing. This
equation is independent from the others, but a model for it can be obtained from the first model by
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introducing a new pairing and application operation that does things pointwise in a suitable sense.

There must be many other kinds of models that relate the functional structure to other constructs

as well.

Suppose we have domains that satisfy just the six equations. Then from the primitive opezations
given, many others can be defined. The operation of A-abstraction is, to be sure, a variable-binding
operator (somewhat like a quantifier), but the others are algebraic in nature. As stated, application

is a binary operation, and pair, fst and snd are constants. But we can define binary, ternary, and
unary operations such as: pair(x)(y), pair(x)(pair(y)(z)), fst(x), snd(y), pair(snd(z))(fst(z)), and
many, many more. In other words, the domain D will become a model of many kinds of algebras.

In general, an algebra is a set together with several operations defined on it, taking values in the
same set. The simplest situation is to consider finitary operations (i.e., operations taking a fixed
finite number of arguments). When giving an algebra, the sequence of arities of the fundamental
operations is called the signature of the algebra. Thus, a ring is often given with just two binary
operations (addition and multiplication) making a signature (2,2). Now, subtraction is definable in
first-order logic from addition, but the definition is not equational. Therefore, it may be better to
consider a ring as an algebra of signature (2,2,2) with subtraction being taken as primitive. Of,
course it is enough to have the minus operation, which is unary. So, a signature (2,1,2) is also
popular. Strictly speaking, however, different signatures correspond to algebras of different types.
Not every algebra of signature (2,2,2) is "equivalent" to one of signature (2,1,2); rings as algebras

have very special properties.

By a continuous algebra we mean a domain with various continuous operations singled out. In
particular, our A-calculus model can be considered as a continuous algebra of signature (2,0,0.0.0,0).
The binary operation is the operation of functional application. Here, 0 indicates a 0-ary operation,
which is just a constant. We already know the constants pair, fst, snd. The other two popular
constants from the literature on A-calculus are called S and K. In terms of A-abstraction they can
be defined as follows:

S = (Ax. (Ay. (Az. X(z)(y(z)))))

K = (Ax. (Ay. x))

They enjoy many, many equations in the algebra (see, for example, [Bar84]) and, in fact. any
equation involving the A-operator can be rewritten purely algebraically in terms of S and K and
application.

We will call an expression in the notation of applicative algebra which has no variables a

combination. Any combination F defines an n-ary operation:

F(x 1 )(x 2) ... (x,,).

What we have been remarking is that the algebras so obtained from combinations can be very
rich. In a series of papers [EngSl, Eng] Engeler discussed just how rich these algebras can be. A
representative result, following Engeler, will be exhibited here.

Theorem 26 Given a signature (s1, S2,... , s,), there are combinations F1 , F2 ,... , F,' defining op-

erations on D of these arities such that whenever a continuous algebra of this signature is given
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on a domain A that is a retract of D, then A can be made isomorphic to a subalgebra of this fixed

algebra structure on D.

Proof: If A is a retract of D, then A can be regarded as a subset of D, and all the continuous

operations on A can be naturally ,ytp dd to continuous oper-.tions on D of the same arrities. (This

does not solve the problem, since the operations on D depend on the choice of A. That is to say, at

the start A is a subalgebra of the wrong algebra on D.) We can call these operations o, o2,... Ion.

We are going to define the representation of A as a subalgebra of D by means of a continuous

function p: A --- D defined by means of a fixed-point equation:

p(a) = pair(a)

(pair(Ax2 ... Ax81. p(ol(a, fst(x 2),. .. , fst(X.1 ))))

(pair(AX 2 ... Ax.. p(o2(a, fst(X2),. .. ,fst(X,))))

(pai,(Xz2 ... AX,..- p(o,(a, fst(X2),. , fSt(X,, ))))

(K))...)

In this way, we build into p the elements from A and the operations as well. The question is how

to read off the coded information.

Consider the following combinations:

F1 = Ax. fst(snd(z))

F2 = Ax. fst(snd(snd(x)))

F, = Ax. fst(snd(snd(.., snd(x)))),

which have to be rewritten in terms of 5, K, fst, and snd. We then calculate that

Fi(p(al))(p(a2))'... (p(a.,)) = p(oi(a1, a2,.. a,)).

This means if we consider the algebra (D,F 1,F 2,...,F,), then we can find by means of the

definition of p any algebra (A, ol, o2,..., o,,), isomorphic to a subagebra of the first algebra. 3

1.7.3 Solving domain equations with projections.

As we mentioned earlier, one slightly bothersome drawback to PN as a domain for solving recursive

domain equations is the fact that it cannot represent the sum operator +. One might try to

overcome this problem by using the operator ( . + . )T as a substitute since this is representable

over PN. However, the added top element seems unmotivated and gets in the way. It is probably

possible to find a cpo which will represent the operators x, -, +. However, for the sake of variety,

we will discuss a slightly different method for solving domain equations. Let us say that an operator

F on cpo's is p-representable over a cpo U if and only if there is a continuous function RF which

completes the following diagram (up to isomorphism):
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F

Cpo's Cpo's

imj RF {im

Fp(U) --- Fp(U)

Since there will be no chance of confusion, let us just use the term "representable" for "p-

representable" for the remainder of this section. Since Fp(U) is a cpo we can solve domain equations

in the same way we did before provided we can find domains over which the necessary operators

can be represented.

The construction of a suitable domain is somewhat more involved than was the case for 'PN.
We begin by describing the basis of a domain U. Let S be the set of rational numbers of the form

n/2" where 0 < n < 2' and 0 < m. As the basis U0 of our domain we take finite (non-empty)

unions of half open intervals [r, t) = {s E S I r < s < t}. A typical element would look like

L A ~A A A A ~A

We order these sets by superset so that the interval [0, 1) is the least element. There is no top
element under this ordering. If we adjoin the emptyset, say B = U0 U {0}, then we get a Boolean
algebra. (Note that the complement of a finite union of intervals is again one such-unless it is

empty.) In particular, any interval contains a proper sub-interval so, as.a Boolean algebra, B
is atomless. But B is countable, and-up to isomorphism-the only countable at -mless Boolean

algebra is the free one on countably many generators. But this Boolean algebra has the property
that every countable Boolean algebra is isomorphic to a subalgebra. Now, suppose A is a countable

bounded complete poset. Let B' be the boolean algebra of subsets of A generated by those subsets
of the form T z = {y E A I x Q y} and order this collection by superset so that 0 will be its largest

element. The map i : x ' - x is a monotone injection which preserves existing least upper bounds.
Moreover, a subset u C A is bounded just in casen:: u T" x is non-empty. Now, if j : B' - B maps
B' isomorphically onto a subalgebra of B, then the composition j o i cuts down to an isomorphism
between A and a normal subposet A' 4 Uo. Letting U be the domain of ideals over U0 we may now

conclude the following:

Theorem 27 For any bounded complete domain D, there is a projection

p:U -D. I

We can now use this to see that an equation like X -5 N. + (X -- X) has a solution. The proof
that - is representable over U is almost identical to the proof we gave above that it is representable

over PN. To get a representation for +, take a pair of continuous functions

€+ :U - (U + U)
T+ (U + U) - U
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such that t o IF = id and T+ o (D Q id. Then take

R+(r,s) = T+ o (r + s) o 4+.

Also, there is a representation RNL for constant operator X '-- Na.. Hence the operator X -

N± + (X -- X) is represented over U by the function

p - R+(RN.,(p), R-_(p,p)).

We have, in fact, the following:

Lemma 28 The following operators are representable over U: --., o-+, X , (. (.), (.)K.

This means that we have solutions over the bounded complete domains for a quite substantial
class of recursive equations. More discussion of U may be found in [Sco811, [Sco82a] and [Sco82b].

1.7.4 Representing operators on bifinite domains.

The convex powerdomain (.)b cannot be representable over U because it does not preserve bounded
completeness. We construct a domain over which this operator can be represented as follows. Given
a poset A, define M(A) to be the of pairs (z, u) E A x P1f(A) such that x C z for every z E u.
Define a pre-ordering on M(A) by setting (x, u) - (y, v) if and only if there is a z E u such that
z C y. Now, given a domain D, we define D+ to be the domain of ideals over (M(A), I-).

Theorem 29 If D is bifinite, then so is D+ . Moreover, if D - D+ and E is any bifinite domain,
then there is a projection p: D - E. I

A full proof of the theorem may be found in [Gun87]. We will attempt to offer some hint about
how the desired fixed point is obtained. At the first step we take the domain I = {I} containing
only the single point I. At the second step, 1+, there are elements a = (.,{.}) and b = (_,'0)
with b I- a. At the third step there are five elements

(a,{Ja}), (a,{Jb}), (b, {b}), (b, 0), (a, 0)

which form the partially ordered set I+ + pictured in Figure 1.4. Note that there is another element

(a, {a,b}) E M(I ) but this satisfies (a,{a}) I- (a, {a,b}) and (a, {ab}) F (a, {a}) so we have

identified these elements in the picture. The next step I... has 20 elements (up to equivalence
in the sense just mentioned) and it is also pictured in Figure 1.4. We leave the task of drawing a
picture of I.... as an exercise for the (zealous) reader. It should be noted that each stage of the
construction is embedded in the next one by the map x - (x, {x). The closed circles in the figure
are intended to give a hint of how this embedding looks.

The technique which we have used to build this domain can be generalized and used for other

classes as well [GJ88].
We have the following:
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IV -

i+  I++ i+

Fiore 1.4: A domain for representing operators on bifites,

Lemma 30 The following oeastors are p- pn sentab e over V: -, o-, x, rd, Eos
(.)" (.)I. I

As with most of the other operators, to get a representation for (), take a pair of continuous

functions .Dh V Vh

lk VO V

such that (D o IQ = id and IP o (D __. id. Then

is a representation for the convex powerdomain operator.

We hope that the reader has begun to note a pattern in the way operators are represented. Most

of the operators (x, (9, 4-, E, (.±, (.)', (.) , (.)4) may be handled rather straight- forwardly using the

corresponding action of these operators on functions. Slightly more care must be taken in dealing

with the function space and strict function space operators where one must use a function like G.

The stock of operators that we have defined in this chapter is quite powerful and it can be used for

a wide range of denotational specifications. However, the methods that we have used to show facts

such as representability (using finitary closures or finitary projections) will apply to a very large

class of operators which satisfy certain sufficient conditions.
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To understand this phenomenon, one must pass to a more general theory in which such operators

are a basic topic of study. This is the theory of categories. M[any people find it difficult to gain

access to the theory of domains when it is described with categorical terminology. On the other
hand, it is difficult to explain basic concepts of domain theory without the extremely useful general

language of category theory. A good exposition of the relevance of category theory to the theory

of semantic domains may be found in [SP82].

Only a small number of categories of spaces having the properties which we have described

above are known to exist. What are the special traits that these categories possess? First of all,

they have product and function space functors which satisfy the relationship we described at the
beginning of section 4. This property, known as cartesian closure is a well-known characteristic

of categories such as that of sets and functions. But our cartesian closed categories have not only

fixed points for (all) morphisms but fixed points for many functors as well. It is this latter feature
which makes them well adapted to the task of acting as classes of semantic domains. One additional

property which makes these categories special is the existence of domains for representing functors.

This is not to say that there are not other categories which will have the desired properties.

One particularly interesting example are the stable structures of Berry [Ber78] which we have not
had the space to discuss here. Interesting new examples of such categories are being uncovered
by researchers at the time of the writing of this chapter. The reader will find a few leads to

such examples in the published literature listed below, and we expect that many quite different

approaches will be put forward in future years.
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Chapter 2

Denotational Semantics.
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2.1 Introduction

In programming linguistics, as in the study of natural languages, "syntax" is distinguished from
"semantics". The syntax of a programming language is concerned only with the structure of

programs: whether programs are "legal"; the connections and relations between the symbols and
phrases that occur in them. Semantics deals with what legal programs mean: the "behaviou:"
they produce when executed by computers.

The topic of this chapter, Denotational Semantics, is a framework for the formal description of
programming language semantics. The main idea of Denotational Semantics is that each phrase of
the language described is given a denotation: a mathematical object that represents the contribution
of the phrase to the meaning of any complete program in which it occurs. Moreover, the denotation
of each phrase is determined just by the denotations of its subphrases.

Thus Denotational Semantics is concerned with giving mathematical models for programming
languages. Models are constructed from given mathematical entities (functions, numbers, tuples,
etc.). This'is in contrast to the axiomatic approach used in other major frameworks, such as Hoare
Logic [10] and Structured Operational Semantics [24].

The primary aim of Denotational Semantics is to allow canonical definitions of the meanings of
programs. A canonical, denotational definition of a programming language documents the design
of the language. It also establishes a standard for implementations of the language--ensuring that
each program gives essentially the same results on all implementations that conform to the standard.
A denotational definition does not specify the techniques to be used in implementations; it may,
however, suggest some, and it has been shown feasible to develop implementations systematically
from specifications written using the denotational approach. Finally, a denotational definition
provides a basis for reasoning about the correctness of programs-either directly, or by means of
derived proof rules for correctness assertions.

A further aim of Denotational Semantics is to promote insight regarding the concepts underlying
programming languages. Such insight might help to guide the design of new (and perhaps "better")
programming languages.

Currently, most programming language standards documents attempt to define semantics by
means of informal explanations. This is in contrast to syntax, where formal grammars are rou-
tinely used in standards (in preference to informal explanations). However, experience has shown
that informal explanations of semantics, even when they are carefully worded, are usually incom-
plete or inconsistent (or both), and open to misinterpretation by implementors. They are also an
inadequate basis for reasoning about program correctness, and totally unsuitable for generation
of implementations. These inherent defects of informal explanations do not afflict denotational
definitions (except when definitions are left unfinished, or when their formal status is weakened by
excessive use of informal abbreviations and conventions).

This chapter has two purposes. The first of these is to explain the formalism used in Denota-
tional Semantics: abstract syntax, semantic functions, and semantic domains. Section 2.2 relates

concrete syntax and abstract syntax. Section 2.3 considers the nature of semantic functions, and ex-
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plains the properties of compositionality and full abstractness. Section 2.4 summarizes the concepts

and notation of semantic domains, referring to Gunter and Scott [18] for a detailed presentation of

domain theory.

The second purpose of this chapter is to illustrate the major standard techniques that are
used in denotational descriptions of programming languages: environments, stores, continuations,

etc. Section 2.5 explains the relation between these techniques and some fundamental concepts

of programming languages, and uses the techniques to give denotational descriptions of many

conventional programming constructs.

The Bibliographical Notes (Section 2.6) provide references to some significant works on Deno-

tational Semantics.

The reader is expected to be familiar with the basic notions of discrete mathematics (sets.

functions, relations, partial orders) and to be prepared to meet a substantial amount of formal

notation. Familiarity with programming languages is an advantage, but not essential.
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2.2 Syntax

As mentioned at the beginning, the syntax of a programming language is concerned only with the
structure of programs: which programs are "legal"; what are the connections and relations between

the symbols and phrases that occur in them.
There are several kinds of syntax, which we distinguish below. (Readers who are familiar

with the distinction between "concrete syntax" and "abstract syntax" may prefer to skip to Sec-

tion 2.2.3.)

2.2.1 Concrete syntax

Concrete Syntax treats a language as a set of strings over an alphabet of symbols.
Concrete syntax is usually specified by a grammar that gives "productions" for generating

strings of symbols, using auxiliary "nonterminal" symbols. So-called "regular" grammars are inad-
equate for specifying syntax of programming languages: "context-free" grammars are required, at

least.

Definition: A context-free grammar G is a quadruple (N,T, P, so) where N is a finite set of
nonterminal symbols, T is a finite set of terminal symbols (disjoint from N), P C N x (N U T)' is
a finite set of productions, and so E N is the start symbol.

(In this section, X* is the set of strings over X, for any set X; the empt string is indicated by
A, and string concatenation by juxtaposition. The notation X* is given a different interpretation
when X is a semantic domain, from Section 2.4 onwards.)

It is common practice to distinguish a lexical level and a phrase level in concrete syntax. The
terminal symbols in the grammar specifying the lexical level are single characters; those in the

phrase-level grammar are the nonterminal symbols of the lexical grammar. Here, let us ignore the
distinction between the lexical and phrase levels, for simplicity.

When presenting a grammar, it is enough to list the productions: the sets of nonterminal and
terminal symbols are implicit, the start symbol is determined by the first production. We write
a production (a, (z ... x,,)) as a ::= x ... z,,. We may also group several productions for the
same nonterminal, separating the alternative strings on the right-hand side by '1'. (This notation
for grammars is essentially the same as so-called BNF.) For later use, a mnemonic name called a
phrase sort is associated with each nonterminal symbol (we write the phrase sort in parentheses)
and occurrences of nonterminal symbols in right-hand sides of productions may be distinguished

by subscripts.

An example of a grammar for the concrete syntax of a simple language of expressions is given
in Table 2.1. (The productions for identifiers are omitted, as they are of no interest.)

We could define the language of strings generated by a context-free grammar in terms of "deriva-
tion steps". For our purposes here, it is more convenient to go straight to the notion of "derivation
trees", in which the order of derivation steps is ignored.
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(EXPRESSION)

E ::=T E+T I E-T

(TERM)

T = F I T*F

(FACTOR)

F ::= II CE)

(IDENTIFIER)

I ::= unspecified

Table 2.1: A grammar for concrete syntax

Definition: Let L be a set (of labels). An L-labeled tree t is a pair (l,(t, ... tn)), where I E L,

n > 0, and t1 ... t, is a string of L-labeled trees. We say that t has label I and branches it, ... , tn.

Let TreeL be the set of finite L-labeled trees; this is the least set that is closed under construction

of L-labeled trees.

(Of course, other representations of trees are possible, e.g., as partial functions from "occur-

rences" to labels.)

Definition: For any t E TreeL, frontier(t) E L* is defined (inductively) by

frontier(l, (t, ... t,)) = 1, if z = 0;

I frontier(t,) .. frontier(tn), if n > 0.

Definition: A derivation tree according to a grammar G = (N, T, P, so) is a finite (.V U T)-labeled
tree with label so, such that if a node labeled a has branches labeled X1 ,.... Xn, n > 0, then
( a , ( x i .. n ) P .

The set of all derivation trees according to G is denoted by TreeG.

For notational convenience we identify the tree (1, (A)) with 1. This allows us to write, e.g.,
(a, (zl t X2)) to form a derivation tree, where t is a tree and z 1 , X2 are terminal symbols. Figure 2.1
depicts a derivation tree according to the grammar of Table 2.1.

Now that we know what derivation trees are, let us use them to define the languages generated
by grammars:

Definition: The language of strings 1(G) g T" generated by a grammar G = (N, T, P, so) is given

by

£(G) = {w E T" I 3t E TreeG : w = frontier(t)}.

If any string in £(G) has more than one derivation tree, then G is said to be ambiguous.
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T

T F

F E

I E + T

T F

F I
I C

b

Figure 2.1: A derivation tree for concrete syntax

Whereas ambiguity seems to be an inescapable feature of natural languages, it is to be avoided
in programming languages. For example, there should be no vagueness about whether 'a*b+c' is to
be read as 'a*(b c)' or as '(a*b)+c', since they should evaluate to different results, in general. (Of
course grouping may not matter in some cases, such as 'a+b c'.) Moreover, the efficient generation
of language parsers from grammars requires special kinds of unambiguous grammars, e.g.. satisfying
the so-called LALR(1) condition.

Unfortunately, unambiguous grammars tend to be substantially more complex than ambiguous
grammars for the same language, and they often require nonterminal symbols and productions that
have no relevance to the essential phrase structure of the language concerned. For the purposes of
semantics, the phrase structure of languages should be as simple as possible, devoid of semantically-
irrelevant details. Yet there should be no ambiguity in the structure of phrases! Thus we axe led
to use ambiguous grammars, but to interpret them in such a way that the specified syntactic
entities themselves can be unambiguously decomposed. Such a framework is provided by so-called
"abstract" syntax.

2.2.2 Abstract syntax

Abstract syntax treats a language as a set of trees. The important thing about trees is that,
unlike strings, their compositional structure is inherently unambiguous: there is only one way of
constructing a particular tree out of its (immediate) sub-trees.

It is convenient to use derivation trees to represent abstract syntax. Abstract syntax is specified
using the same kind of (context-free) grammar that is used for concrete syntax-but now there is no
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worry about ambiguity. An example of a grammar for abstract syntax is given in Table 2.2. It gives
an appropriate abstract syntax for the language generated by the grammar of Table 2.1. Notice
that the nonterminal symbols T and F, together with the terminal symbols '' and ')', are not
present in the abstract syntax: they were only for grouping in concrete syntax. Also, the various
concrete expressions involving operators are collapsed into a single form of abstract expression-at
the expense of introducing the nonterminal symbol 0. Figure 2.2 shows a derivation tree according
to the grammar of Table 2.2.

(EXPRESSION)
E ::= II EO 0 E 2

(OPERATOR)

0 ::= -*

(IDENTIFIER)

I ::- unspecified

Table 2.2: A grammar for abstract syntax

E

E 0 EI I / I
I * E 0 EI I I I
a I * I

b C

Figure 2.2: A derivation tree for abstract syntax

Definition: The abstract syntax defined by a grammar G is TreeG, the set of derivation trees
according to G.

The phrase sorts associated with nonterminal symbols in our grammars (such as EXPRESSION,
IDENTIFIER) identify corresponding sets of derivation trees (note that such trees generally occur
only as branches of trees in Treec).

Abstract syntax may be characterized algebraically, using the notion of a "signature", as follows.

Definition: Let S be a set (of sorts). An S-sorted signature E is a family of sets {ES, sES

(of operators).

A E-algebra A consists of a family {Au},Es of sets (called carriers) and for each operator
f E E..,, a total function fA : A, 1 x ... x A,, -' A,.
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Definition: A E-homomorphism h : A -- B (where A and B are E-algebras) is a family {h,},Es

of (total) functions h, : A, -+ B, such that for each f E . and ai E A,

fB(hl(al),...,hj,(a,)) =- h(fA(al,. .. ,a.)).

The composition h' o h of E-homomorphisms h : A --+ B, h' : B -- C is the family of func-
tions {h' o h,},Es. The identity E-homomorphism idA : A - A is the family of identity functions
{idA.},Es. The E-algebras A, Bare said to be isomorphic when there exist Z-homomorphisms
h: A --. B, h': B -- A such that h' oh = idA and ho h'= idB.

The key concept is that of "initiality":

Definition: A E-algebra I is initial in a class C of E-algebras iff there is a unique E-homomorphism
from I to each algebra in C.

Proposition 31 If I and J are both initial in a class C of E-algebras, then I and J are isomorphic.

Proof: Let h : I --+ J, h' : J --+ I be the unique homomorphisms given by the initiality of 1, re-
spectively J. Now h' o h and idj are both homomorphisms from I to itself; by the initiality of I
they must be equal. Similarly, h o h' = idjj

For each grammar G we define a corresponding signature Eo, as follows:

Definition: Let G = (N, T, P, so). Then EG is the N-sorted signature with

G, ... s.,j = {pE PIp = (s,(uo9s...s.u.));uo, ... ,u. E T'}

for each (s ... s,,) E N* and s E N.

By the way, not all signatures can be made into context-free grammars: a signature may have an
infinite number of sorts and operators. Notice also that a signature does not have a distinguished
"start sort".

Now TreeG can be made into a Eg-algebra, which we denote by A(G), as follows. Take the
carriers A(G), to be A(N, T, P,s) for each s E N. (In practice it is convenient to refer to these
sets by mnemonic names, associated with nonterminal symbols when grammars are specified.) For
each p E EGsl....o,,$ with p = (s, (uos, ... s,,u,,)), where ul,..., u, E T*, define a function

PA(c) : A(G),, x .-. x A(G), - A(G),

by letting for all ti E A(G),,, for i = 1,...,n,

PA(G)(t, .... , tn) = (s, (uotl ... tnu,)).

Proposition 32 A(G) is initial in the class of all EG-algebras.

Proof: Let A be any EG-algebra. Define {h, :A(G), - A,}sss inductively, as follows. If t =

(s,(uot...t, u,)) with each ui E T* and each ti E A(G),j, and p = (s,(uOsI ... s,u,)). then
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h,(t) = PA(h. (t ),... , ,)).

As each t E .A(G), is uniquely decomposable as (s, (urtl ... t,,u,,)), the h, are well-defined (and they

are total since derivation trees are finite). Moreover it can be seen that this definition is forced by

the homomorphic property, so {h,},Es is the unique homomorphism from A(G) to A. Hence .A(G)

is initial in the class of all EG-algebrasj

Denotational Semantics defines the semantics of a programming language on the basis of its

abstract syntax. The semantics of some concrete syntax may be obtained as well: by giving a
function that maps concrete syntax into abstract syntax. Assuming that the concrete grammar is

unambiguous, it is enough to map concrete derivation trees into abstract derivation trees. (This

map might be neither 1-1 nor onto, in general. Trying to invert it is called "pretty-printing", or
"unparsing".)

The specification of the function from concrete to abstract syntax is quite trivial if the grammar
for abstract syntax is obtained systematically from that for concrete syntax, just by "unifying"
nonterminals and eliminating "chain productions". In fact the grammar of Table 2.2 was obtained
from that of Table 2.1 (mainly) in that way; the corresponding map from concrete to abstract
syntax may be imagined from the example where the tree in Figure 2.1 is mapped to that in

Figure 2.2.
In general, it ii up to the semanticist to choose an appropriate abstract syntax for a given

language. Different choices may influence the difficulty of specifying the semantics. For instance,
consider the rather trivial "language" of binary numerals, with concrete syntax given by the gram-
mar in Table 2.3. Of course the semantics of binary numerals can be specified for the given syntax;
but it turns out (as shown in Section 2.3) to be significantly simpler when the abstract syntax is
given by the grammar in Table 2.4. (This latter grammar is unambiguous, so it could be ased for

concrete syntax as well as abstract syntax. But in general, the grammars used for abstract syntax
are highly ambiguous, e.g., as for expressions in Table 2.2.)

(BINARY-NUMERAL)

B ::= 0 1 1iO I 1B

Table 2.3: Concrete syntax for binary numerals

(BINARY-NUMERAL)

B ::= 0 1 11 BO I B1

Table 2.4: Abstract syntax for binary numerals

There do not seem to be any hard and fast rules for choosing grammars for abstract syntax.
Usually, one has to compromise between on the one hand, keeping close to a given grammar for

concrete syntax, and on the other hand, facilitating the semantic description.
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Note that it is not required that the frontiers of the trees generated by the abstract grammar are
the strings generated by the given concrete grammar, nor even that the same terminal symbols are
used. In fact some authors prefer to use disjoint sets of symbols in concrete and abstract grammars,
to avoid altogether any chance of confusion between concrete and abstract syntax. Here, we take the
opposite position, and use symbols that make our grammars for abstract syntax strongly suggestive
of familiar concrete syntax.

2.2.3 Context-sensitive Syntax

The grammars used here for specifying abstract syntax are context-free. But it is well-known
that several features of programming languages are context-sensitive, and cannot be described by
context-free grammars (e.g., that identifiers be declared before they are referred to, and that the
"types" of operands match their operators).

In Denotational Semantics, context-sensitive syntax is regarded as a part of semantics, called
static semantics (because it depends only on the program text, not on the input). For simplicity,
let us assume that the static semantics of a program is just a truth-value indicating the legality of
the program. Then the rest of the semantics of programs can be specified independently of their
static semantics-the semantics of programs that are not legal (according to the static semantics)
is defined, but irrelevant.

In practice, a proper treatment of static semantics might involve specification of error messages.
Also, it may be convenient for a static semantics to yierd abstract syntax that reflects context-
sensitive disambiguations (for instance, whether occurrences of '+' are arithmetical, or set union),
and to define the rest of the semantics on the disambiguated abstract syntax.

Static semantics is not considered further in this chapter. For a study of the semantics of types,
see [26).

So much for syntax.
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2.3 Semantics

Consider an entire program in some programming language. What is the nature of its semantics?

First of all let us dismiss any effects that the program might have on human readers, e.g., evoking

feelings of admiration or (perhaps more often) disgust. In contrast to philology, programming
linguistics is not concerned with subjective qualities at all. The semantics of a program is dependent
only on the objective behaviour that the program causes (directly) when executed by computers.

Now computers are complex mechanisms, and all kinds of things can be observed to happen when
they execute programs: lights flash, disc heads move, electric currents flow in' circuits, characters
appear on screens or on paper, etc. For programs that are specifically intended to control such
physical behaviour, it would be necessary to consider these phenomena in their semantics.

But here, let us restrict our attention to programs whose behaviour is intended to be independent
of particular computers. Such programs are typically written in general, high-level programming

languages that actually deny the programmer direct control over the details of physical behaviour.
The appropriate semantics of these programs is implementation-independent, consisting of just
those features of program execution that are common to all implementations.

The implementation-independent semantics of a program may typically be modeled mathemat-
ically as a function (or relation) between inputs and outputs-where an input or output item might
be just a number. The concrete representation of input and output as strings of bits is (usually)

implementation-dependent, and hence ignored; likewise, the length of time taken for program exccu
tion. But termination properties are generally implementation-independent, and should therefore
be taken into account in semantics.

Thus the semantics of a program is a mathematical object that models the program's
implementation-independent behaviour. The semantics of a programming language consists of
the semantics of all its programs.

Actually, some details of semantics are often left implementation-defined, e.g.. limits on the
size of numbers, maximum depth of recursive activation. These are regarded as parameters of
the semantics; when such parameters axe supplied, the implementation-independent semantics of a

particular subclass of implementations is obtained.
A standard for implementations of a programming language may be established by:

(i) specifying the semantics of all programs in the language; and

(ii) specifying a "conformance" relation between semantic objects and implementation be-
haviours.

Our concern in this chapter is with (i), but let us digress for a moment to indicate how (ii) might
be done.

Assume a correspondence between the inputs and outputs in the semantic model and some
physical objects processed by implementations. Let a program and its input be given. If these
uniquely determine output (and termination properties) then a conforming implementation. when

given the physical representations of the program and input, must produce a representation of the
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output-computing "for ever" if the semantics specifies non-termination. If, however, there are
several possible outputs for a given program and input-i.e., the program is nondeterministic-the

implementation need only produce one of them (perhaps not terminating if that is a possibility);

the implementation may or may not be nondeterministic itself.

2.3.1 Denotations

Now back to our main concern: specifying the semantics of programs. The characteristic feature of
Denotational Semantics is that one gives semantic objects for all phrases-not only for complete
programs. The semantic object specified for a phrase is called the denotation of the phrase. The
idea is that the denotation of each phrase represents the contribution of that phrase to the semantics

of any complete program in which it may occur.

The denotations of compound phrases must depend only on the denotations of their subphrases.
(Of course, the denotations of basic phrases do not depend on anything.) This is called composi-

tionality.

It should be noted that the semantic analyst is free to choose the denotations of phrases-
subject to compositionality. Sometimes there is a "natural", optimal choice, where phrase. have the
same denotations whenever they are interchangeable (without altering behaviour) in all complete

programs; then the denotations are called fully abstract, and they capture just the "essential"

semantics of phrases.

Note that considering interchangeability only in complete programs lets the notion of full ab-
stractness refer directly to the behaviours of programs, rather than to their denotations. Different

choices of which phrases are regarded as complete programs may give different conclusions con-
cerning whether full abstractness obtains.

It is not always easy (or even possible) to find and specify fully abstract denotations, so in
practice a compromise is made between simplicity and abstractness.

As an introductory (and quite trivial) example take the binary numerals. An abstract syntax
for binary numerals was suggested in Section 2.2. Now let us extend the syntax to allow "programs"

consisting of signed binary numerals, see Table 2.5.

(SIGNED-BINARY-NUMERAL)

Z ::= B I-B

(BINARY-NUMERAL)

B ::= 0 1 1 I B 0 1 B 1

Table 2.5: Abstract syntax for signed binary numerals

The meanings (i.e., "behaviours") of signed binary numerals are supposed to be integers in
Z, according to the usual interpretation of binary notation (i.e., the most significant bit is the
left-most), negated if preceded by '-'. We are free to choose the denotations for unsigned binary
numerals B. The natural choice is to let each B denote the obvious natural number in N. and such
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denotations (specified formally in Section 2.3.2) are indeed fully abstract.

Any other choice of denotations is perhaps rather contrived in this simple example. but let us

consider an alternative possibility so as to illustrate lack of full abstractness.
We could choose the denotation of B to be a pair (n, 1) E N2 , where n gives the numerical value

of B and l gives its length. Then the denotation of a signed binary numeral 'B' or '-B' would
be determined just by n. Such denotations can be defined compositionally, but they are not fully
abstract: for instance, the phrases '0' and '00' get distinct denotations, yet they can always be
interchanged in any signed binary numeral without affecting its meaning.

Now consider the original (concrete) grammar for unsigned binary numerals (Table 2.4) and

regard it as a specification of abstract syntax. With this phrase structure, we axe no longer able to
take the denotation of B to be just its numerical value: the value of the phrase 'iB' is determined

not only by the numerical value of B, but also by the number of its leading zeros. In fact the
(n, 1) E N2 denotations mentioned above turn out to be fully abstract for this syntax.

The above example shows that the property of full abstractness can be rather sensitive to
the structure of abstract syntax-and thereby casts doubt on its appropriateness as an absolute

criterion of the quality of denotational descriptions.
In Denotational Semantics, there is in general a sharp distinction between syntax and seman-

tics, and denotations consist of mathematical objects (such as numbers and functions) that exist
completely independently of programming languages. In particular, denotations do not usually
incorporate program phrases as components. In fact it would not conflict with compositional-
ity to let phrases denote even themselves, but such "denotations" tend to have (extremely) poor

abstractness.

There are two cases, however, when it is desirable to use phrases as denotations:

* identifiers usually have to be their own denotations (e.g., in declarations); and

e for languages like Lisp, where phrases can be computed, the denotation of a phrase essentially
corresponds to its abstract syntax (and the benefits of the denotational approach are then
questionable, since semantic equivalence is just syntactic identity).

2.3.2 Semantic Functions

Semantic functions map phrases (of abstract syntax) to their actual denotations. The semantics of
a programming language may be specified by defining a semantic function for each sort of phrase.

Recall that abstract syntactic entities have an unambiguous structure. Hence semantic functions
may be defined inductively by specifying, for each syntactic construct, its denotation in terms of
the denotations of its components (if there are any). The conventional way of writing such an
inductive definition in Denotational Semantics is as a set of so-called semantic equations. with (in
general) one semantic equation for each production of the abstract syntax.

Let a, a,, ... , a. be (possibly-subscripted) nonterminal symbols, with associated phrase sorts
s. s .... s,n. Let .F,, F' 1, ... , F,,, be sen tic functions mapping phrases of sort s(,) to their
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denotations (in practice, the semantic functions are usually given mnemonic names when they are

introduced). Then the semantic equation for the production 'a ::= u0 a, ... a,,u. ' is of the form

Y,[ uoal...a,, I = f(Y.0[aJ,...,o.[aJ).

The way that the denotations of the phrases a,, ... , a, are combined is expressed using whatever

notation is available for specifying particular objects-determining a function, written f above.

Note that the emphatic brackets [ ] separate the realm of syntax from that of semantics, which

avoids confusion when programming languages contain the same mathematical notations as are

used for expressing denotations.

To illustrate the form of semantic equations, let us specify denotations for signed binary numer-

als (with the abstract syntax given in Table 2.5). We take for granted the ordinary mathematical

notation (0, 1,2, +, -, x) for specifying particular integers in Z and natural numbers in N. The
semantic functions (Z for signed binary numerals, B for unsigned binary numerals) are defined

inductively by the semantic equations given in Table 2.6.

Z : SIGNED-BINARY-NUMERAL -* Z

Z[ B I = B[B]

Z[- B = -B[B]

B: BINARY-NUMERAL - N

B[0 = 0

811] =1i

B[B0J = 2 x (B[B])

B[ B 1] = (2 x (B[B])) + 1

Table 2.6: Denotations for signed binary numerals

Perhaps the standard interpretation of binary notation is so much taken for granted that we

may seem to be merely "stating the obvious" in the semantic equations. But we could just as well

have specified alternative interpretations, e.g., by reversing the r6les of '0' and '1', or by making

the right-most bit the most significant.

In effect, the semantic equations reduce the semantics of the language described (here, the binary

numerals) to that of a "known" language (here, that of ordinary arithmetic). This reduction may

also be viewed as a "syntax-directed translation", although it is then essential to bear in mind that

phrases are semantically-equivalent whenever they are translated to notation that has the same

interpretation, not merely the same form.
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An alternative way of specifying semantic functions is to exploit the formulation of abstract
syntax as an initial algebra, discussed in Section 2.2. Recall that the abstract syntax A(G) specified

by a grammar G is a sE-algebra, where ZG is the signature corresponding to the productions of

G. As A(G) is the initial EG-algebra (Proposition 32), there is a unique EG-homomorphism from

A(G) to any other EG-algebra. So all that is needed is to make the spaces of denotations into a
"target" EG-algebra, say D, by defining a fnction PG for each p E EG, i.e., for each production p
of G. Then the semantic functions are given as the components of the unique Ec-homomorphism

from A(G) to D.

This approach is known as Initial Algebra Semantics. Whereas such an explicit algebraic for-
mulation can be convenient for some purposes, the approach is essentially the same as Denotational

Semantics, and it is a simple matter to transform semantic equations into specifications of target
algebras-or vice versa-while preserving the semantic functions that are thereby defined.

2.3.3 Notational Conventions

Some abbreviatory techniques are commonly used in semantic equations:

" The semantics of a construct may be specified in terms of that of a compound phrase, provided
no circularity is introduced into the inductive definition. For instance, we might specify

S[ if E then S S = [ if E then S else skip J

where S[ if E then S1 else S2 ] is specified by an ordinary semantic equation. As well as

abbreviating the right-hand sides of semantic equations, the use of this technique emphasizes
that the syntactic construct is just "syntactic sugar" and does not add anything of (semantic)

interest to the language.

" There may be several semantic functions for a single phrase sort, say P : P - Di. This
corresponds to a single function F : P - (D 1 x ... x D,), with the components of denotations

being defined separately.

" The names of semantic functions may be omitted (when there is no possibility of confusion).
In particular, when identifiers are essentially their own denotations, their (injective) semantic

function is generally omitted.

These abbreviations have been found to increase the readability of denotational descriptions
without jeopardizing their formality.
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2.4 Domains

Appropriate mathematical spaces for the denotations of programming constructs are called (se-

mantic) domains. Here, after a brief introduction to the basic concept of a domain, a summary is

given of the notation used for specifying domains and their elements. A thorough explanation of

the notation, together with the theory of domains, is given by Gunter and Scott [18]. The main

techniques for choosing domains for use in denotational descriptions of programming languages are

demonstrated in Section 2.5.

2.4.1 Domain Structure

Domains are sets whose elements are partially-ordered according to their degree of "definedness".

When x is less defined than y in some domain D, we write x ED y and say that x approximates y
in D. (Mention of the domain concerned may be omitted when it is clear from the context.) Every

domain D is assumed to have a least element ID, representing "undefinedness"; moreover there

are limits U,, x,, for all (countable) increasing sequences zo _ ... - .... (Thus domains

are so-called (w-)cpos. Further conditions on domains are imposed by Gunter and Scott [18]; but
these conditions need not concern us here, as their primary purpose is to ensure that the class of

domains is closed under various constructions.)

For an example, consider the set of partial functions from N to N, and for partial functions

f,g, let f 9_ g iff graph(f) 9 graph(g). This gives a domain: Q is a partial order corresponding

to definedness; the least element I is the empty function (but every total function is maximal, so

there is no greatest element); and the limit of any increasing sequence of functions is given by the

union of the graphs of the functions.

A domain D may be defined simply by specifying its elements and it approximation relation E.

as above. But it is tedious to check each time that C has the required properties-and to define

ad hoc notation for identifying elements.

In practice, the domains used in denotational descriptions are generally defined as solutions

(up to isomorphism) of domain equations involving the standard primitive domains and standard

domain constructions. Not only does this ensure that the defined structures really are domains, it

also provides us with standard notation for their elements.

The standard primitive domains are obtained merely by adding _L to an unordered (but at most

countable) set, of course letting L C- r for all x. Domains with such a trivial structure are called

flat. For example the domain T of truth values is obtained by adding I to the set {true,false}, and

the domain N1 of natural numbers by adding _ to N.

There are standard domain constructions that correspond closely to well-known set construc-

tions: Cartesian product, disjoint union, function space, and power sets. Of course these domain

constructions have to take account of the C relation, as well as the elements; this leads to several

possibilities.

Before proceeding to the details of the standard domain notation, let us consider what functions

between domains are required.
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The functions generally needed for the semantics of programming languages are monotone, in

that they preserve the relation C:

x 1_ y implies f(x) C f(y);

and continuous, in that they also preserve limits of increasing sequences:

xo C xi _c ... C x. _ .. implies f(Xn) = f(Xn)

Note that we do not insist that functions preserve least elements. Those functions f that do satisfy

f(L) = I

are called strict. Constant functions are non-strict functions (in general).

Partial functions from N to N are represented by strict total functions from N± to N±, the

result I corresponding to "undefined". Notice, by the way, that all strict functions on N are

continuous-but in practice, we only make use of those that are computable in the usual sense.

The importance of continuity is two-fold:

(i) Let D be a domain. For any continuous function f : D --+ D there is a least x E D such that

X=fAX).

This z is called the least fixed point of f, written fix(f). It is given by U1 fN(L).

Non-monotone functions on domains need not have fixed points at all; whether monotone

(but non-continuous) functions on domains always have least fixed points depends on the

precise structure of domains, but in any case their fixed points are not necessarily obtainable

as the limits of countable increasing sequences.

(ii) There exists a non-trivial domain D. such that

D,, S . "- D-.

provided that D, - Do, is just the space of continuous functions on D,.. Domains such as

D,, that "contain" their own (continuous) function space are called reflexive.

If Do - D,, were to be the space of all functions, D.. would have to be the trivial (one-point)
domain, by Cantor's Theorem.

Least fixed points of continuous functions provide appropriate denotations for iterative and

recursive programming constructs. Reflexive domains are needed for the denotations of constructs

that may involve "self-application": procedures with procedure parameters in ALGOL60, functions

with dynamic bindings in Lisp, assignments of procedures to variables in C, etc. Even when self-

application is forbidden (e.g., by type constraints), it may still be simpler to specify denotations as

elements of reflexive domains, rather than to introduce infinite families of non-reflexive domains.

The structure of domains described above is further motivated by the fact that domains with
continuous functions provide denotations for almost all useful programming constructs. (The only

exception seems to be constructs that involve so-called "unbounded nondeterminism", correspond-

ing to infinite sets of implementation-dependent choices.)
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2.4.2 Domain Notation

Now for a summary of the notation for specifying domains and their elements, following Gunter

and Scott [18]. The (abstract) syntax of the notation is given in Table 2.7. Some conventions for

disambiguating the written representation of the notation, together with some abbreviations for

commonly-occurring patterns of notation, axe given in Section 2.4.3.

(DOMAIN-EXPRESSIONS)

d ::= w 1 0 1T I Nj.I
di -d2 i do- d2 I

d, x'...xd I d®"...® d I

d+ ... +dI dD e... d, I
d. I d- I dc I

(DoMAITN-VARIA BLES)

w::- arbitrary symbols

(EXPRESSIONS)

e ::= x I I T I true I false I
el =d e2  ifel then e2 else e3 0 succ

AxEd. e I ee2 I idd I eloe2 fixd I strictd

(ej,...,e,) I (ej,...,e > I on4 I smashd I
[el,...,en] in4 I UPd I downd

jej I elWe 2 I e I extd

(VARIABLES)

z ::= arbitrary symbols

Table 2.7: Notation for domains and elements

Let us start with domain expressions, d. These may include references to domain variables, w,
whose interpretation is supplied by the context of the domain expression. This context is generally

a set of domain equations of the form

W1 "- dl,... ,wn = dr

where the wi are distinct and no other variables occur in the di. As is shown by Gunter and Scott

[18], there is always a "minimal" solution to such a set of equations (up to isomorphism). We need
not worry here about the construction of the solution-the equations themselves express all that
we really need to know about the defined domains. Note, however, that the simple equation

D=D--D
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defines D to be the trivial (cne-point) domain! Most domain equations that arise in practice do

not admit trivial solutions. (Gunter and Scott [18] show how to force non-trivial solutions to

D=D- D.)

Element expressions e may include references to element variables x whose domain and inter-

pretation is supplied by the con.text. Usually the context is just the enclosing (element) expression,

but we also allow auxiliary definitions of the form

x=eEd

The scope of an auxiliary definition is the entire specification. (Mutually-dependent auxiliary

definitions may be regarded as abbreviations for independent definitions involving the least fixed

point operator.)

Basic Domains

Id denotes the least element of a domain d.

I is the 1-point domain, consisting only of i.

0 is the 2-point domain, consisting of Lo and T. (Domains do not usually have greatest elements,

so there is no need for a general notation Td.)

Truth Values

T is the fiat 3-point domain of truth values, consisting of IT, true, and false.

ei =d e2 tests the equality of el and e2 in any flat domain d. The value is IT if either or both of
el and e2 denote -Ld; otherwise it is true or false. (The monotonicity and continuity of =d

follow from the flatness of d: equality would not be monotonic on a non-flat domain.)

if el then e2 else e3 requires el to denote an element of T, and e2 , e3 to denote elements of some

domain d. Then it denotes e2 if el denotes true; it denotes e3 if el denotes false; and it denotes

Id if el denotes IT.

In practice we allow all the usual Boolean functions, extended strictly (in all arguments) to T,

and written using infix notatica.

Natural Numbers

N± is the flat domain of natural numbers, consisting of IN,, 0, 1, ... (no infinity).

succ denotes the strict extension of the successor function from N to N±.

In practice we allow all known (computable) functions on the natural numbers, extended strictly

in all arguments to N1 , and written using infix notation.
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Function Domains

d, - d2 denotes the domain of all continuous functions from the domain denoted by d, to the
domain denoted by d2. (Henceforth the tedious "denoted by" is generally omitted.) We have

f Ed., 2 g ifff(x) Qd2 g(x) for all x in d1 .

Ax E d. e denotes the (continuous) function f given by defining f(x) = e, where x ranges over d.
This provides the context for interpreting references to x in e.

el e2 denotes the result f(z) of applying the function f : d --+ d' denoted by el to the value x E d
denoted by e2.

idd denotes the identity function on domain d.

el o e2 denotes the composition of the functions f: d' -* d" and f2 : d -- d' denoted by el and e2,
respectively, so that for all x E d, (el o e2)(x) = el(e2(X)).

fixd denotes the least fixed point operator for domain d, which maps each function f in d - d to
the least solution x of the equation x = f(x).

dl o-+ d2 denotes the restriction of d, --+ d2 to strict functions.

strictd denotes the function that maps each function in d, -* d2 to the corresponding strict function
in d, where d = d, o--+ d2.

Product Domains

d, x ... x d denotes the Cartesian product domain of n-tuples, for any n > 2, generalizing the
binary product domain of pairs. We have (xl,... ,x) Ed, x...xd (Y 1 i. Y) iff xi Ed, yi for
i = 1,...,n.

(el,... ,en) denotes the n-tuple with components el,... ,en, for any n > 2.

(ei,... ,e,) denotes the target tupling of the functions denoted by the ei, abbreviating
Ax E d. (el(W),... ,e,(x)), where x does not occur in the ei.

on4 denotes the projection onto the i'th component, mapping (X,...,x,) to xi , where d -

d, x .. x d,.

di @... d,, denotes the "smash" product obtained from the Cartesian product by identifying all
the n-tuples that have any _ components. Note that ® preserves flatness of domains.

smashd denotes the function that maps each element of d, where d = d, x ... x d,, to the corre-
sponding element of d, ® ... ® d, giving _L if any of the components are I.
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Sum Domains

di + ..' + d, denotes the "separated" sum domain d whose elements are (distinguished copies of)

the elements of the di together with a new Id. Elements of d originating from different

summands di are incomparable in d.

d, ( ... E d, d~notes the "coalesced" sum domain d where the .L elements of (the distinguished

copies of) the d, are identified with .1d. Note that E preserves flatness of domains.

in4 denotes the injection function mapping elements of di to the corresponding elements of d, where
d = d, E) ... (Dd, and I < i<n.

[el,...,e,n] denotes the "case analysis" of the functions fi : di -- d' denoted by the ei, mapping

ini(z) to the value of fi(x) for 1 < i < n (but mapping 1 to 1).

Lifted Domains

d± denotes the lifted domain d' obtained by adding a new Id' under (a distinguished copy of) d.

upd denotes the function that maps each element of d to the corresponding element of d±.

downd denotes the function that maps each element of di back to the corresponding element of d.

Lists

d* denotes the domain of lists of finite length, with non-I.components in d. Note that lists with

different lengths are incomparable in 7.

d"O denotes the domain of infinite lists with components in d. Here, the "empty" list is the infinite

list of -l's. We let 11 d0* 12 iff every component of 11 approximates the corresponding

component of 12. Thus the empty list approximates all other lists.

Power Domains

d denotes the "natural" (convex, Plotkin) power domain. Its elements may be imagined as equiv-

alence classes of sets, where two sets are equivalent iff this follows from the continuity (and

associativity, commutativity and absorption) of the binary union operation.

E.g., if x 1 y C z, then the sets {x,y,z} and {x,z} are equivalent; moreover, if xO E x,

.. E x, E ... and X = {x,, 0 < n}, then X is equivalent to X U {U, X,}.

The other power domains (upper, lower) considered by Gunter and Scott [18] are not used in

this chapter: they do not accurately reflect the possibility of non-termination, as they force

sets X U {.} to be equivalent either to {.L} or to X.

4ef denotes the element of d corresponding to the set {z}, where e denotes the element x E d.
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el W e2 denotes the element of d corresponding to the union of X, and X2, where el and e2 denote

elements of a power domain d Q corresponding to the sets X, and X2.

eb denotes the pointwise extension of e to map d14 -+ d24, where e denotes a function in d, - d2.

extd extends functions in d = d, --+ d24 to d14 --- d24.

It is possible to represent the empty set by using the domain 0 E d b instead of just db; emptiness

can be tested for using [Ax E 0. el,Ax E db. e2]. However, there is no (continuous) test for

membership in power domains (just as there is no continuous test for equality on non-flat domains).

So much for the basic notation for domains and their elements.

2.4.3 Notational Conventions

When the above notation is written in semantic descriptions, domain expressions in element ex-

pressions are generally omitted when they can be deduced from the context. Parentheses are used

to indicate grouping, although the following conventions allow some parentheses to be omitted:

" Function domain constructions --+ and o-. associate to the right, and have weaker precedence

than -r, e, x, and ®:

D, x D2 -- D3 --+ D4 is grouped as (DI x D2) -- (D3 -* D4).

" Application is left-associative, and has higher precedence than the other operators: f x y is

grouped as (fx) y, and f o g(x) is grouped as f a (g(x));

" Abstraction Ax E d. e extends as far as possible: (Ax E D. fx) is grouped as (Ax E D. (f x)):

* Composition o is associative, so its iteration does not need grouping.

(Without these conventions, our semantic descriptions would require an uncomfortable number of

parentheses.) Furthermore, when implied unambiguously by the context, the following operations

may be omitted:

* isomorphism between w and d, when w = d is a specified domain equation;

" the following isomorphisms (which follow from the definitions of the basic domains and domain

constructors):

-di + .. + d,, -5 (dl)j. _ . (d,)±L;

- 0 - IJ.;

- T - (0 e 0), mapping true to in(Io);

- N - (0 E N.L), mapping 0 to in(-Lo);

- d=-- ( 0O S ( d 0 d *) ) ;

- d° ° :- (d x d°°);
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- dOO -(N o- d):

" injections ini : di o--- d, E ... E d,;

" "bottom extensions" of functions f: di -- d' to sum domains:
I. .. , J-, f,.L.... ] : di .(1)---( d ,o-+ d';

" the inclusions of d, ®... ® d, in d, x.-. x d, and of d o--+ d' in d --- d', and the strict inclusion

ofd 1  ED ..- (D d in d, +.-. + d,.

Finally, the notation A(xl E dl,..., z, E d,). e abbreviates

AX E d, x ... x d4,,. (A, E dl. . Ax, E d4. e)(onix)... (on,,x)

(where z does not occur in e). It denotes the function f defined by f(xl,..., x,,) = e.
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2.5 Techniques

The preceding sections introduced all the formalism that is needed for specifying denotational
descriptions of programming languages: grammars, for specifying abstract syntax; domain notation.
for specifying domains and their elements; and semantic equations, for specifying semantic functions
mapping syntactic entities to their donotations.

This section gives some examples of denotational descriptions. The main purpose of the exam-
ples is to show what techniques are available for modeling the fundamental concepts of programming
languages (sequential computation, scope rules, local variables, etc.).

Familiarity with these techniques allows the task of specifying a denotational semantics of a
language to be factorized into (i) analyzing the language in terms of the fundamental concepts, and
(ii) combining the techniques for modeling the concepts involved. Furthermore, the understanding
of a given denotational description may be facilitated by recognition of the use of the various
techniques.

The programming constructs dealt with in the examples below are, in general, simplified versions
of constructs to be found in conventional "high-level" programming languages. It is not claimed
that the agglomeration of the exemplified constructs would make a particularly elegant and/or
practical programming language.

Section 2.5.1 outlines the semantics of literals (numerals, strings, etc.). Then Section 2.5.2
specifies denotations for arithmetical and Boolean expressions, illustrating a simple technique for
dealing with "errors". Section 2.5.3 shows how to specify denotations for constant declarations,
using "environments" to model scopes. Section 2.5.4 extends expressions to include function ab-
stractions, and gives a denotational description of the A-calculus.

Next, Section 2.5.5 gives denotations for variable declarations, using "stores" and "locations".
Then Section 2.5.6 deals with statements, using "direct" semantics; it also explains how the tech-
nique of "continuations" can be used to model jumps. Section 2.5.7 describes procedures with
various modes of parameter evaluation.

Section 2.5.8 distinguishes between the concepts of "batch" and "interactive" input and output.
Section 2.5.9 shows how powerdomains can be used to model nondeterministic programs. Finally,
Section 2.5.10 introduces "resumptions" and uses them to give denotations for a simple form of
concurrent processes.

Caveat: In Section 2.5.2, the denotations of expressions are simply (numerical. etc.) values.
But later, they have to be changed: in Section 2.5.3 (to be functions of environments), and again in
Section 2.5.5 (to be functions of stores). Such changes to denotations entail tedious changes to the
semantic equations that involve them. This rather unfortunate feature of conventional denotational
descriptions stems from the fact that the notation used in the semantic equations has to match the
precise domain structure of denotations.

Of course, these changes would be unnecessary if denotations of expressions were to be functions
of environments and stores from the start. Although that might be appropriate when giving a
denotational description of a complete programming language, it is undesirable in this introduction:
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the complexity of the denotations of simple constructs would obscure the relation between particular

program constructs and the appropriate techniques for modeling them.

An alternative approach is to introduce auxiliary notation for combining denotations. Then
when domains of denotations are changed, only the definition of the auxiliary notation requires

modification: the semantic equations themselves may be left unchanged. Moreover, the auxiliary

notation may be chosen to correspond directly to fundamental concepts, such as "sequencing" and

"block structure", so that the semantic equations explicate the fundamental conceptual analysis of
the described constructs. Such an approach is presented elsewhere [34]. It would be inappropriate
to adopt it here, as it tends to hide the mathematical essence of denotations, and would give a
distorted impression of the conventional approach to Denotational Semantics.

2.5.1 Literals

The syntax of a programming language usually includes "literals" (sometimes called "literal con-
stants", or just "constants"). A literal is a symbol (or phrase) that always refers to the same item

of data, irrespective of where it occurs. Examples of literals are 'true' and 'false', numerals,
characters, and character strings.

The denotational semantics of literals is fairly straightforward, but somewhat tedious, to specify.
We have already seen a simple example: binary numerals (Section 2.3). So let us skip most of the

details here. A skeleton abstract syntax for literals is given in Table 2.8.

(LITERAL)

L ::= true I faseI N I C [CS

(NUMERAL)

N ::= unspecified

(CHARACTER)

C ::= unspecified

(CHARACTER-STRING)

CS ::= unspecified

Table 2.8: Syntax for literals

For the denotations of 'true' and 'false', we may use the values true and false of the standard
domain T. The denotations of numerals should take into account that different implementations
generally impose different bounds on the magnitude of numbers, and on the accuracy of "real"
numbers. So let the domain of numbers-together with the associated operations-be a parameter

of the semantics. The same goes for the denotations of characters (the ordering may vary between

implementations) and strings (their length may be bounded). Let us leave such parameters as
unspecified variables in the semantic description.

For example, let the domains Num, Char, and String be unspecified domain variables, together
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with various variables for elements of, and functions on, these domains; see Table 2.9. It is straight-

forward to define the semantic functions introduced in Table 2.10 in terms of the given elements

and functions. The details are omitted here.

Num = unspecified

zero, one E Num

neg E Num o-* N um

sum,diff E (Num®Num)o- Num

prod,div E (Num®Num)o- Num

Char = unspecified

ewd E Char o-Num

chr E Numo- Char

String = unspecified

str E Char* o- String

chrs E String o- Char*

V = T EB Num (D Char e String

Table 2.9: Domains for literals

C : LITERAL - V

M: NUMFRAL --- Num

C : CHARACTER - Char

CS: CHARACTER-STRING - String

Table 2.10: Denotations for literals

By the way, the domains of literal denotations are generally flat (and countable). Note in
particular that the finite numerical approximations to real numbers made by computers should

not be represented by values related by the computational approximation ordering of domains, C:
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once 2n approximate real number has been computed, further computation does not improve the

degree of approximation of that number. (Of course, a program may indeed compute a series of

app-oximate numbers, but the numbers are not necessarily increasingly-good approximations to

som-3 particular number.)

2.5.2 Expressions

Ezpr'essions in programming languages are constructed using operators and (perhaps) if-then-else

from primitive expressions, including literals. Abstract syntax for some typical expressions is given

in Table 2.11. (Further expressions are considered in later sections.)

(ExPRESSION)

E ::= L I MO El El DO E I if El then E2 else E3

(MONADIC-OPERATOR)
MO :: = ", I -

(DYADIC- OPERATOR)

DO ::= A IV + - * I

Table 2.11: Syntax for expressions

We take the denotations of expressions to be elements of a domain EV that consists of truth-

values, numbers, etc., representing the result of expression evaluation. The domain EV is a --o-called
"characteristic domain", and its relation to other characteristic domains introduced in later sections

can give valuable insight into the essence of the described programming language. For now we let

EV contain th~e same values as V, i.e., the values of literaL4 .ater, further expressible values are

introduced.
We are now ready to define the denotations of expressions and operators: see Table 2.12. Note

that the notational conventions introduced at the end of Section 2.4 are much exploited in the

semantic equations. For instance, in the equation for if-expressions, there is an application of a

function (At E T ... ) to an argument in EV: however, T is a summand of V. which is isomorphic

to EV, so the given function, f say, is implicitly extended to [f, -LNum-EV, -LChar-EV, J-Str,ng-EV] E
(T - Num - Char Z String) - EV, and then composed with an isomorphism to give a function in

EV - EV.

Thus the denotation of an erroneous expression such as 'if 42 then... else...' is 2.. The

semantics of such erroneous expressions is actually irrelevant, provided that programs containing

them are deemed illegal. More generally, however, it might be better to avoid representing errors by

-L, as the essential use of -L (in later sections) is to represent non-termination. To do this we would

have to introduce special elements for representing errors into all domains, and the extra notation

for specifying the treatment of errors would be an unwelcome burden in the semantic equations.
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EV =V

C : EXPRESSION -- EV

E[ L ] = [L1

.[ MO E, I= MO[MOI(eIE1)

E[ El DO E2 I- DO[DOJ(smash(£IE1 ,£IE21))

C[ if E then E2 else E3 ]= (At E T. ift t:-en E4Fj] eise E[E 31)

MO: MONADIC-OPERATOR -' (V 0- V)

MC0 - J = At E T. ift then false else true

MO[ - J = An E Num. diff(zero, n)

DO: DYADIC-OPERATOR -(V V O- V)

DO[ A J = A(ti E T, t 2 E T). if t1 then t 2 else false

DO[ + J = ).(ni E Num, n2 E Num). sum(n 1 , n 2)

DO[= = A(vi E V, v2 E V). (vi =v v2)

Table 2.12: Denotations for expressions
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2.5.3 Constant Declarations

Identifiers are symbols used as "tokens" for values. In programming languages, there are various

constructs which introduce identifiers and "bind" them to values. It is conventional to refer to the
value-to which an identifier is bound as the value "denoted" by the identifier, but this terminology
is a bit misleading: the denotation of an identifier is the identifier itself (or rather, an element of a

semantic domain corresponding to the abstract syntax of identifiers).

Let us start with some simple "constant declarations", whose abstract syntax is given in Ta-

ble 2.13. The intended effect of the declaration 'val I E' is to "bind" I to the value of E. The

construct 'let CD in E' determines the "scope" of such "bindings": the bindings made by CD
are available throughout E-except where overridden by another binding for the same identifier,

since 'let's may be nested, giving a "block structure ' in expressions. In 'CD1 ; CD2 ', the scope
of the bindings introduced by CD1 includes CD2. The phrase 'rec CD' extends the scope of the

declarations in CD to CD itself, making them "mutually-recursive".

(CONSTANT-DECLARATIONS)

CD ::= val I = E I CDi; CD2 I rec CD

(EXPRESSION)

E ::= II let CD in E

Table 2.13: Syntax for constant declarations

In the semantics, we write DV for the domain that represents the values "denotable" by identi-
fiers. DV is a characteristic domain, like EV. In real programming languages there are sometimes
values that are expressible but not denotable-numbers in ALGOL60, for instance. Less obviously.

there may be values that are denotable but not expressible-types in PASCAL, for instance.
"Environments" are used to represent associations between identifiers and denoted values. The

domain of environments, together with some basic functions on environments, is defined in Ta-
ble 2.14. Ide is assumed to be a flat domain corresponding to the abstract phrase sort IDENTIFIER.

The element T E 0 is used to indicate the absence of a denoted value. (To allow the presence of a
denoted value to be tested, we would have to lift DV to DVj., since the denoted value might be J..)
Notice that overlay(e, e') gives precedence to e, whereas combine(e, e') = combine(e', e) is intended

for uniting the bindings of disjoint sets of identifiers.
The result of expression evaluation now depends, in general, on the values bound to the identi-

fiers that occur in it. This dependence is represented by letting the denotation of an expression be a
function from environments to r-:pressible values-which requires rewriting the semantic equations
previously specified for expressions.

Clearly, an appropriate denotation for a constant declaration is a function from environments to
environments. But there is a choice to be made: should the resulting environment be the argument
environment eztended by the new bindings? or just the new bindings by themselves? Let us choose

the latter, which gives a bit more flexibility, exploited in later sections.
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Env = Ide - (DV E) 

void = AI E Ide. in2 T

E Env

bound = Al E Ide. Ae E Env. [idDV, -L](e(I))

E Ide - Env --. DV

binding = AI E ide. Av E DV. AP' E ide. if I = Id. P then in, (v) else in2 (T)

E Ide-+DV-Env

overlay =A(e E Env, e' E Env). Ale EIde. [idov, AX E 0. e'(l)](e(I))

E Env xEnv --+Env

combine =A(e E Env, Ae' E Env). Al E Ide. [Ad E DV. [-L, Ax E 0. d], Ax E 0. idDVeo]

EEnv xEnv --*Env

Table 2.14: Notation for environments

The denotations of constant declarations and of the related expressions, together with the

modified denotations of the previously- specified expressions, are defined in Table 2.15.

The semantics of recursive declarations makes use Of fiXEn, which gives the least fixed point

of the function in Env - Env to which it is applied. To see that this provides the appropriate

denotations, consider CD[ rec val I aE ](e). From the semantic equations we have

CV[ rec vs). I - E J(e) =

fix(Ae' E Env. bind ing(I)(.6[EJ(overlay(e', e))))

i.e., the least e" E Env such that

el= binding(I)(E[E](overlay(e', e))).

Let v = &6[EJ(overiay(e', e)); we have

v = E[EJ(overlay(binding I v, e))

and in fa -t

V = flx(Av' E EV. C[EJ(overlay(binding I v', e))).

Notice that a direct circularity in the recursive declarations gives rise to I as a denoted value.

e.g.,
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DV=V

EV=V

C : CONSTANT-DECLARATIONS -- Env - Env

CV[ val I = E I = Ae E Env. binding I(,[Ele)

CV[ CD,; CD 2 I = Ae E Env. (Ael E Env. overlay(C*Z[CD2](overlay(el,e)),ej))

(CV[CD1 le)

CV[ rec CD ] = Ae E Env. fix(Ae' E Env. CV[CD](overlay(e',e)))

€ : EXPRESSION - Env -- EV

E[ I ] = Ae E Env. bound Ie

.6 let *CD in E ] = Ae E Env. &[EJ(overlay(CV[CDje,e))

,6[ L I = Ae E Env. 4[L]

,6 MO E ] = Ae E Env. MO[MO](E[Eile)

,6 E, DO E2 I = Ae E Env. VO[DOj(smash(6.[E]e, E[E2 ]e))

.[6 if E, then F2 else E3 I = Ae E Env. (At E T. ift then E[E 2]e else CJE 31e)

(C[E1 Je)

Table 2.15: Denotations for constant declarations and expressions (modified)

CD[ rec val I = I j = binding I.

in contrast to a mere "forward reference":

CV[ rec (val I = I'; val I' = 0) 1 = overlay(binding I'0, binding 10).

The most interesting case is when the sequence of environments e' defined by

0e' = !inding(I)(C[Ej(L))

' binding(I)(&[E](overlay(e', e))

e = binding(I)(([EJ(overlay(e',e))
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is strictly increasing, converging to-but never reaching-the limit point e' = U e'. With the
expressions considered so far, it is not possible to get such a sequence; but it becomes possible
when function abstractions are introduced, as in the next section.

2.5.4 Function Abstractions

"Functions" in programs resemble mathematical functions: they return values when applied to
arguments. In programs, however, the evaluation of arguments may diverge, so it is necessary to
take into account not only the relation between argument values and result values, but also the
stage at which an argument expression is evaluated: straight away, or when (if) ever the value of
the argument is required for calculating the result of the application.

Various programming languages allow functions to be declared, i.e., bound to identifiers. Often,
functions may also be passed as arguments to other functions. But only in a few languages is
it possible to express functions directly, by means of so-called "abstractions", without necessarily
binding them to identifiers. (These languages are generally the so-called "functional programming

languages".)
The syntax given in Table 2.16 allows functions to be expressed by abstractions of the form 'fun

(val I) E'; we refer to 'val I' as the "parameter declaration" of the abstraction (further forms
of parameter declarations are introduced later) and to E as the "body". Notice that constant dec-
laations of the form 'val I' - fun (val I) E' resemble "function declarations" in conventional
programming languages; recursive references to I' in E are allowed when the declaration is prefixed
by 'rec'.

The phrase 'E (E 2)' expresses the application of a function to an argument, with the "actual
parameter" -2 being evaluated before the evaluation of the body of the function abstraction is
commenced-this "mode" of parameter evaluation is known as "call by value". (Functions in
programming languages are usually allowed to have lists of parameters; this feature is omitted

here, for simplicity.)

(EXPRESSION)

E ::= fun (PD) E I E1 (E 2 )

(PARAMETER- DECLARATION)

PD ::= val I

Table 2.16: Syntax for functions and parameter declarations

There are two distinct possibilities for the scopes of declarations in relation to abstractions, aris-
ing from identifiers which occur in the bodies of abstractions, but which refer to outer declarations.
With so-called static scopes, the scopes of declarations extend into the bodies of an abstraction at
the point where the abstraction is introduced, so that the declaration referred to bv an identifier is
fixed. With dynamic scopes, the body of an abstraction is evaluated in the scope of the declarations
at each point of application, so that the declaration referred to by an identifier in an abstraction
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body may vary-and be different from that referred to with static scopes. There is some dispute

in the programming community about which of these scope rules is "better". Here, the semantic

description of static scopes is illustrated; dynamic scopes are only marginally more complicated to

describe.

The domains for use in the semantics of function abstractions are specified in Table 2.17. Notice

that the definitions of DV and EV supercede the previous definitions. (No changes are needed to the

semantic equations for declarations and expressions given in Table 2.12, thanks to our notational

conventions about injections and extensions related to sums.)

F = (PV o- FV).L

PV=VEF

FV=V

DV = VEF

EV=VEF

. : EXPRESSION Env --+ EV

E[ fun (PD) E ]=

Ae E Env. (up o strict)(Av E PV. idFv(6[EJ(overIay(PVVPD]v, e))))

E[ E1 (E-2) ] = Ae E Env. (down o idF)(S[EIJe)(E[E 2Je)

PV : PARAMETER-DECLARATIONS - PV - Env

'PV[ va]. I =Av E PV. binding Iv

Table 2.17: Denotations for functions and parameter declarations

To model abstractions it is obvious to use functions. The domains consisting of parameter values,

PV, and function result values, FV, may be regarded as characteristic domains. Few programming

languages allow functions to be returned as results (and some even forbid functions as arguments).

The functions corresponding to the values of abstractions are taken to be strict, reflecting
value-mode parameter evaluation: I represents the non-termination of an evaluation, and the non-
termination of an argument evaluation implies the non-termination of the function application.

The abstraction values are lifted so that an abstraction never evaluates to L.
Notice that the domain F is reflexive: it is isomorphic to a domain that (essentially) includes a

domain of functions from F.

The semantic equations for function abstractions are given in Table 2.17. Various isomorphisms
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are left implicit, for instance that between DV and EV; likewise, some injections and extensions

related to sum domains axe omitted.

An alternative mode of parameter evaluation is to delay evaluation until the parameter is used.

This mode is referred to as "call by name". (The main difference it makes to the semantics of
expressions is that an evaluation which doesn't terminate with value-mode, may terminate when

name-mode is used instead.)
Only a few programming languages provide name-mode parameters. Much the same effect,

however, can be achieved by passing a (parameterless) abstraction as a parameter, and applying it
(to no parameters) wherever the value of the parameter is required.

The main theoretical significance of name-mode abstractions is that they correspond directly
to A-abstractions in the A-calculus of Church (see [4]). Consider the abstract syntax for A-calculus

expressions given in Table 2.18. The axiom of so-called "o-conversion" of the A-calculus makes
an application '(WI. E) (E)' equivalent to the expression obtained by substituting E for I in E
(with due regard to static scopes of A-bindings), and this is just E when I does not occur in E.

(EXPRESSION)

E ::= (AI. E) I E(F) I I

(IDENTIFIER)

I ::= unspecified

Table 2.18: Syntax for A-expressions

It is a simple matter to adapt the domains that were used to represent value-mode abstractions,
so as to provide a denotational semantics for the A-calculus. The only necessary changes are to let
FV include F, and to remove the restriction of F to strict functions: but let us dispense with the
lifting as well, as it is no longer significant. The presence of V (in FV) ensures that the solution
to the domain equations is non-trivial. (The standard model for the A-calculus [18] is obtained by

taking PV = FV = F, leaving essentially F = F - F, and the trivial solution has to be avoided

another way.)
The denotations for the A-calculus are specified in Table 2.19, where for once the injections and

extensions related to the sum domain are made explicit (although the isomorphisms between the
left- and right-hand sides of the specified domain equations are still omitted).

The standard model for the A-calculus has been extensively studied, and there are some signif-
icant theorems about it. Most of these carry over to the denotations defined above. First of all,
there is the theorem that the semantics does indeed model 3-conversion:

Proposition 33 For any A-expressions 'A. E' and E',

£[ (Al. E)(E') I = rJ [E'IIJE 1.

Here '[E'/IJE' is the proper substitution of E for free occurrences of I in E: the identifiers of
A-abstractions in E are assumed (or made) to be different from the free identifiers in "'.
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F= PV - FV

PV=VE F

FV=VEF

DV =V9F

EV=VEF

6 : EXPRESSION - Env - EV

[ (A. E) ]=
Ae E Env. in2(Av E PV. C[E](overlay(binding Iv, e)))

E[ E1 (E2) I = Ae E Env. [1, idF](E[EJe)([Eje)

Table 2.19: Denotations for A-expressions

The key to proving the above theorem is:

Lemma 34 (Substitution) For any A-expressions E, E', for any identifier I, and for any e E

Env,

.[ E ](overlay(binding(I)([Ele),e)) = 9[ [E'/IE ]e.

The following theorem implies that 1-reduction is sufficient for symbolic computation of ap-
proximations to any desired degree of closeness. Let .A(E) be the set of approximate normal forms

of E (obtained from E by finite sequences of -reductions, followed by the replacement of any

remaining redexes by an expression 'f?' denoting I).

Theorem 35 (Limiting Completeness) For any A-expression E,

.[E] = IJ{&[E] I E' E A(E)}.

The original proof by Wadsworth [59] involves the introduction of an auxiliary calculus with numer-

ical labels forcing all reduction sequences to terminate. An alternative proof is given by Mosses and

Plotkin [36] by introducing an "intermediate" denotational semantics, where denotations are taken
to be functions of an argument in the chain domain of extended natural numbers (i.e., with c ):

for finite arguments, the intermediate semantics gives approximations, corresponding to the deno-
tations of approximate normal forms; the standard denotations are obtained when the argument is

00.
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2.5.5 Variable Declarations

The preceding sections dealt with expressions, constant declarations, and function abstractions. In

conventional programming languages, these constructs play a minor r6le in comparison to state-

ments (also called "commands"), which operate on "variables". This section deals with the seman-

tics of variables; statements themselves are deferred to the next section.

In programs, variables are entities that provide access to stored data. The assignment of a value

to a variable has the effect of modifying the stored data, whereas merely inspecting the current

value of a variable causes no modification.

This concept of a variable is somewhat different from that of a variable in mathematics. In

mathematical terms, variables stand for particular unknown values-often, the arguments of func-

tions. These variables do indeed get "assigned" values, e.g., by function application. But the values

thus assigned do not subsequently vary: a variable refers to the same value throughout the term in

which it is used. In fact mathematical variables correspond closely to identifiers in programming

languages.-
Program variables may be simple or compound. The latter have component variables that may

be assigned values individually; the value of a compound variable depends on the values of its

component variables.

Consider the syntax specified in Table 2.20. The variable declaration 'var I: T' determines a
"fresh" variable for storing values of the "type" T, and binds I to the variable. Variable declarations

are combined by 'VDh, VD2 '; such declarations do not include each other in their scopes (although

in our simple example language, it would make no difference if they did, as variable declarations do

not refer to identifiers at all). The types 'bool', 'num' axe for declaring simple variables, for storing
truth-values, respectively numbers; the type 'T [I.. N]' is for declaring compound variables that

have N independent component variables for storing values of type T. In the expression 'Ej [E 2J'.

E1 is supposed to evaluate to a compound variable, v, and E2 to a positive integer, n; then the
result is the nth component variable of v.

(VARIABLE-DECLARATIONS)

VD ::=var : T I VD1, VD2

(TYPE)

T ::= bool I num I T[I..N3

(EXPRESSION)

E ::= E1EE2]

Table 2.20: Syntax for variable declarations and types

Types are used for two purposes in programming languages: to facilitate checking that programs

are well-formed, prior to execution; and to indicate how much storage to allocate, during exe. ution.

Here, we are only concerned with the dynamic semantics of programs, which-in general-does not

involve type checking, only otorage allocation. (Mitchell [26] provides an extensive study of the

82



semantics of types.)

"Stores" are used to represent associations between simple variables and their values. Simple

variables are represented by "locations" in stores; their only relevant property is that they can be

distinguished from each other. Thus a simple variable identifier gets bound to a location, which in

turn gives access to the current value stored in the variable. It is possible for two identifiers to be

bound (in the same scope) to the same location: then assignment to the one changes the value of

the other. Such identifiers are called "aliases".

Compound variables can be represented by values with variables (ultimately, locations) as com-
ponents. Whereas assignment to distinct simple variables is independent, distinct compound vari-

ables may "share" component variables.

The domain of storable values, SV, consists of those items of data that can be stored at single

locations. It may be considered to be a characteristic domain.

The domain of (states of) stores, S, is defined in Table 2.21, together with some basic functions

on stores. A location mapped to false is "free", and a location mapped to true is "reserved" but

not yet "initialized". Notice that the function 'location' is left unspecified-it is supposed to select

any location that is not reserved in the given state. It is usual to ignore the boundedness of real
computer storage in denotational semantics, so 'location' may be assumed not to produce _I (unless

applied to a state in which all the locations have somehow been reserved).

Some further notation concerned with compound variables is specified in Table 2.22. It provides
convenient generalizations of the basic functions on stores. LV is the domain of all variables; RV
is the domain of assignable values. (The names of these domains stem from the sides of the

assignment statement on which variables and assignable values are used: "left" and "right".) They

are considered to be characteristic domains. Usually, as here, LV has Loc .s a summand, and RV

has SV as a summand.

The denotations of variable declarations and types axe given in Table 2.23. It is convenient to
introduce a second semantic function for variable declarations: for specifying that variables are no

longer accessible-when exiting the scope of local variable declarations, for instance. Formally, the

denotation of a variable declaration VD is the pair (VV[VDj,VU[VDJ).

The appropriate denotations for expressions, declarations, etc., are now functions of stores, as
well as environments. Whether expression evaluation should be allowed to affect the store-kown

as "side-effects"-is controversial: some languages (such as C) actually encourage side-effects in
expressions, but allow the order of evaluation of expressions to be specified; others make the order

of evaluation of expressions "implementation-dependent", so that the semantics of programs that
try to exploit side-effects in expressions becomes nondeterministic. Here, let us forbid side-effects.

for simplicity. Thus denotations of expressions may be functions from environments and stores to

expressible values-there is no need to return the current store, as it is unchanged.

We must modify the semantic equations for expressions, now that the denotations of expressions

take stores as arguments. But first, note that in various contexts, there is an implicit "coercion"

when the expression evaluation results in a variable, but the current value of the variable is required.

Such contexts include operands of operators and conditions of if-then-else expressions. Very few
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S = Loc -(SV T)

Loc = 0 E Loc

empty = Al E Loc. false

E S

reservation = Al E Loc. As E S.
(Al' E Loc. if I =Loc ' then true else s(l'))

E Loc- S - S

freedom = Al E Loc. As E S.

(Al' E Loc. if 1 =Loc P then false else s(l'))

E Loc- S- S

store = AlELoc. AvESV. AsES.
(Al' E Loc. if =Loc I' then v else s(l'))

E Loc- SV.- S-S

stored = Al E Loc. As E S. [idsv, -L](s())

E Loc - S - SV

location = unspecified

E S -. Loc

allocation = As E S. (Al E Loc. (1, reservation I s))(location s)

E S- Loc x S

Table 2.21: Notation for stores
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LV = Loc E LV"

RV = SV E RV*

allocations = A(f E S -* LV x S,n E N.L).

if n = 0 then As E S. (T,s) else

(A(I E LV,s E S). (A(I" E LV*,s' E S). ((I,I*), s))
(allocations(f, n - 1) s)) o f

E (S - LV x S) x N. -. S - LV x S

freedoms = (f E LV - S - S,n E N.).
if n = 0 then AI" E 0. id; else

A(I E LV, P E LV*). freedoms(f, n - 1)1* o f
I E (LV - S -- S) X N.L - LV - S - 5

component = An E Nj.. if n = 1 then on1 else component(n - 1) o on2

E N. - LV* -- LV

assign = [store,
[Al E 0. Av E 0. ids ,

A(I E LV,I* E LV). A(v E RV, v' e RV*).

assign I* v" o assign I v]]

E LV -RV-- S - S

assigned = [stored,
[AIE 0. As E S. (T, s),

A(I E LV," E LV-). (A(v E RV,s E S).
(A(v" E RV',s' E S). ((v,v'),s'))

(assigned l s)) o assigned 1]]

E LV--.S--, RVxS

Table 2.2: Notation for compound variables
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SV= TE Num

VV VARIABLE-DECLARATIONS -- S -- (Env x S)

V'V[ var I: T ] = (A(l E LV,s E S). (binding 1l,s))oT[Tj

VV[ VD1 , VD2 J = (A(ei E Env, sl E S). (A(e2 E Env, s 2 E S). (combine(el,e 2),s 2))

(VV[ VD2 JIl))
o VD[VD1J

VU : VARIABLE-DECLARATIONS --- Env - S o-, S

VU[ var I: T J = Ae E Env. TU[T](bound Ie)

Vii VDI, VD2 I = Ae E Env. VU[ VD2]e'o VU[ VDiJe

T: TYPE -- S -- LV x S

T[ bool ] = allocation

"[ num ] = allocation

T[ TEl..N] ] = allocations(T[Tj,N'[N]J)

TU :TYPE - kVo-- -S

TU[ bool j = freedom

TU[ num J = freedom

TU[ T~l..NJ I = fredoms(TU[T,Y[Nj)

Table 2.23: Denotations for variable declarations and types
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programming languages i,.sist that the programmer use an explicit operator on a variable in order

to obtain its current value.

In practical programming languages, various coercions are allowed. A good example is the
coercion from a parameterless function to the result of applying the function, allowed in ALGOL60
and PASCAL. Of course, a static semantic analysis could use contextual information to recognize
such coercions and replace them by explicit operators. But in general, it is easy enough to deal with
coercions directly in the dynamic semantics-although languages like ALGOL68 and ADA allow so
many coercions that it may then be preferable to define the dynamic semantics on the basis of an
intermediate abstract syntax where the coercions have been made explicit.

It is convenient to introduce a secondary semantic function for expressions, R?, that corresponds
to ordinary evaluation followed by coercion (when possible). The modifications to our previous
specification are straightforward; the result is shown in Table 2.24, together with the semantic
equation for 'E [E_2 '.

2.5.6 Statements

The statements (or commands) of programming languages include assignments of values to vari-
ables, and constructs to control the order in which assignments are executed. Some typical syntax

for statements is given in Table 2.25.
In the assignment statement 'E : E2', the left-hand side l must evaluate to a variable and E-2

must evaluate to an assignable value. The executions of the statements in 'SI; S2' are sequenced
(from left to right!) and 'skip' corresponds to an empty sequence of statements. Conditional
execution is provided by 'if E then Sl', whereas 'while E do S"' iterates S, as long as E is
true. The block 'begin VD; Si end' limits the scope of the variable declarations in VD to the
statements S1, so that the variables themselves are "local" to the block, and may safely be re-used
after the execution of Si-assuming that "pointers" to local variables are not permitted. Let us
defer consideration of the remaining statements in Table 2.25 until later in this section.

The denotational semantics of statements is quite simple: denotations are given by functions,
from environments and stores, to stores. The bottom store represents the non-termination of
statement execution, and the functions are strict in their store argument, reflecting that non-
termination cannot be "ignored" by subsequent statements.

We are now ready to define the denotations of statements: see Table 2.26. Notice that the
use of VU improves the abstractness of statement denotations: without it, the states produced by
statement denotations would depend on the local variables allocated in inner blocks.

The following proposition is a direct consequence of the semantic equations, using the unfolding
property of 'fix'.

Proposition 36

S[ while E do S, -"S[ if E then (SI; while E do SI) J.
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F = (PV o- S o- FV)jL

PV = VED FEDLV

FV =V

DV = Vye FED LV

EV = VE FED LV

RZ: EXPRESSION -~ Env -~ S --+ RV

1Z[ E J=Ae E Env. As E S. [idRV,J.1,Al E LV. assigned I s](E[Ele s)

E:EXPRESSION - Env --+ S -~ EV

C1 L I = Ae E Env. As E S. £[ILJ

.61 MO E, I = Ae E Env. As E S. MC[MOJ(1Z[EiJes)

E[ E, DO E2 I = Ae E Env. As E S. VO[DO]J(smash (IZ[EJ]e s,1IZ[E2je s))

l if E, then E2 else E 3 ] =
Ae E Env. As E S. (At E T. if t then 6[E2 je s else E[E3Je s)

(1Z[Ek1le s)

E[ I ] =Ae E Env. As ES. bound le

E[ let CD in E II=Ae E Env. As E S. .6[EJ(overlay(C[CDje s,e) s)

C[ fun (PD) E=
Ae E Env. As E S. (up o strict)(Av E PV. idFV a &[EJ(overlay(1YZ4PDjv. e)))

E[ El (E-2) J=Ae E Env. As E S. (down oidF)(EjElJe s)(E[E2]es) s

E[ El [E 2J Ae E Env. As E S. component(E[E le s, Z[E2Ies)

CD :CONSTANT- DECLARATIONS - Env - S -~ Env

CV[ val I - £E Ae E Env. As E S. binding I (&[E~es)

CV[ CDi; CD2 JAe EEnv. As ES.

(Aei E Env. overlay(CD[CD,2](overlay(e 1 ,e)) s,el))

(CV[CDiJe 3)

CV[ rec CD I = Ac E Env. As E S. fix(Ae' E Env. CV[CDI(overlav(F', e)) s')
-- ~88

Table 2.24: Denotations for expressions (modified)



(STATEMENTS)

S ::= E 1 :- E2 I SI;S2 I skip I
if EthenS, ) hile E do SI

begin VD; S, end I

stop I I: S, I gotoI

Table 2.25: Syntax for statements

S STATEMENTS -- Env - 5 0- S

,S[ E1 : F ] = Ae E Env. As e S. (Al e LV. Av E RV.strictassignlvs)

(C[Eile s)(RZJE Je s)

S[ SI; 2 ] = Ae E Env. S[S2 Je o S[Sle

S1 skip ] = Ae r- Env. ids

S[ if E then S, J = Ae E Env. As E S. (At E T. ift then S[S1Je s else s)

(1Z[Eles)

S[ while E do Si J=Aee Env. fix(AceS0- S. AsES.

(At E T. ift then c(S5[S1 ]e s) else s)

(7Z[E]e s))

S[ begin VD; Si end I =
Ae E Env. (A(e' E Env,s E 5). VU[VDl(e')(S[S](overlay(e',e))(s)))

o VD[ VD]e

Table 2.26: Denotations for statements (direct)

Now let us consider the statement 'stop', whose intended effect is that when (if ever) the

execution of a statement reaches it, the execution of the enclosing program is terminated-without

further changes to the state, just as if control had reached the end of the program normally. We

may say that 'stop' causes a jump to the end of the program. (For now, let programs be simply

statements. The semantics of programs is considered further in Section 2.5.8.)

However, with the denotations for statements used so far, we have (for any statement S, and

e E Env):

S[ SI; while true do skip le = fix(idc-.c) o 8[51 ]e

= "-coSISiIe = I-c

which is in conflict with the intended equivalence of 'stop; while true do skip' to 'stop'.

In order to deal with 'stop', we clearly have to change the denotation of 'S, ; S2'. There are

two main techniques available for modeling jumps such as 'stop': "flags", and "continuatioiks-.
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The technique using flags is to use a domain of denotations such as Env - S o--(S E S). Then
a resulting store in (say) the first summand may represent normal termination, and a result in the
second summand may represent that 'stop' has been executed, so that no further statements are
to be executed. Thus we would have

S[ S, ; 52 ] = [S[S2 Je, in2] o (S[SI]e)

It is easy to imagine the analogous changes that would be needed to the semantic equations for
the other statements, to take account of the two possibilities for resulting stores. (No changes
would be needed to the semantic equations for expressions and declarations, as they do not involve

statements.)
The alternative technique for dealing with jumps is to let denotations of statements take contin-

uations as arguments. The continuation argument represents the semantics of what would be the
"rest of the program", if the statement were to terminate normally. In the denotation of each state-
ment, it is -specified whether to use the continuation argument, or to ignore it and use a different
continuation, such as the empty continuation, which represents a jump to the end of the program.
A divergent iterative statement just never gets around to using the argument continuation (and
strictness is no longer needed to reflect the preservation of divergence).

In the rest of this section, the use of the continuations technique is illustrated, albeit briefly.
Let the characteristic domains (DV, EV, etc.) be as usual. The domain of statement continu-

ations may be taken to be simply the domain S -* S of functions on stores. For uniformity, let
all denotations be functions of continuations. The continuations of expressions are functions from
values to ordinary continuations, those for declarations are functions from environments to continu-
ations, etc. (Auxiliary operations, such as assign, could be changed to take continuation arguments
as well, if desired.) Such a semantics is called a "continuation semantics"; our previous examples
of semantics are called "direct".

Sufficient semantic equations to illustrate the technique of continuations are given in Table 2.27.
(The semantic functions of the continuation semantics are marked with primes to distinguish them
from the corresponding direct semantic functions.) Notice the order of composition in the semantic
equation for 'S, ; S2 ': the opposite to that in direct semi ,.Lc-'

The transformation from direct to continuation semantic straightforward. It may seem quite
obvious that the transformation gives an "equivalent" semantics, but it is non-trivial to prove
such results: the relations to be established between the domains of the direct and continuation
semantics have to be defined recursively, and then shown to be well-defined and "inclusive" [44].

Continuations were originally introduced to model the semantics of general 'goto'-statements.
Consider again the byntax given in Table 2.25. An occurrence of a labeled statement 'I: S1' may
be regarded as a declaration that binds I, where the scope of thiq binding is the smallest enclosing
block 'begin VD; Si end'.

The execution of 'goto I' is intended.to jump to the statement labeled by I. It may be seen

to consist of
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C=S-S

C': EXPRESSION -- Env - (EV - C) - C

V . EXPRESSION -- Env -- (RV -- C) - C

VV' : VARIABLE-DECLARATIONS -= Env --+ (Env - C)-*C

S' : STATEMENTS -- Env -- C --+ C

S'[ El = E2  =AeE Env. Ac EC.
C'[Ei]e (Al E LV. 7V[E]e (Av E RV. c o (assign Iv)))

S'[ SI; S2 ] = Ae E Env. Ac E C. 3'[SI]e (S'[S2]e c)

S'[ skip ] = Ae E Env. Ac E C. c

S'[ while E do Si ]=Ae E Env. fix(Ag E C -* C. AC E C.
JZ'[Ele (At e T. if t then S'[Si]e (g(c)) else c))

S'[ stop I = Ae E Env. Ac E C. ids

S'[ goto I ] = Ae E Env. Ac E C. bound Ie

£CD' : STATEMENTS - Env - C -- Env "

Table 2.27: Denotations for statements (continuations)

1. the termination of enclosing statements (including procedure calls) up to the innermost 'begin
VD; S end' that includes the declaration of the label I; then

2. the execution of those parts of Si that follow after the label I; and finally

3. the normal termination of 'begin VD; S, end', provided that no further jump prevents this.

(Actually, this analysis suggests a direct semantics using flags, where label identifiers are bound
to pairs consisting of "activation levels" and direct statement denotations: continuations are not
actually necessary for the denotational description of 'goto'-statements.)

Letting C be a summand of DV, the value bound to I by 'I: Si' is S'[Silec, where c is the
continuation argument of S'[ I: S, le. So assuming that the environment argument e includes
this binding, the denotation of the 'goto'-statement merelv replaces its argument continuation by
the continuatliu bound to 1, as specified in Table 2.27. The declarative component of statement
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denotations may be expressed by a semantic function £V' whose definition involves a fixed point,

which reflects that the continuations denoted by label identifiers in a block may be mutually-

recursive. The details are somewhat tedious; let us omit them here, as unrestricted jumps to labels

are not allowed in most modern high-level programming languages.

Note that continuations give possibilities for jumps that are even less "disciplined" than those

provided by the 'goto' statement: a general continuation need have no relation at all to the context

of where it is used!

Continuations have been advocated as a standard technique for modeling programming lan-

guages (along with the use of environments and states) in preference to direct semantics. Although

the adoption of this policy would give a welcome uniformity in models, it would also make the

domains of denotations for simple languages (e.g., the A-calculus) unnecessarily complex-and, at

least in some cases, the introduction of continuations would actually reduce the abstractness of

denotations.

The popularity of continuations seems to be partly due to the accompanying notational

convenience-especially that the order in which denotations of sub-phrases occur in semantic equa-

tions corresponds to the order in which the phrases axe intended to be executed: left to right.

(Perhaps direct semantics would be more popular if function application and composition were

to be written "backwards".) Another notational virtue of continuations is that "errors" can be

handled neatly, by ignoring the continuation argument and using a general error-continuation.

2.5.7 Procedure Abstractions

Procedure abstractions axe much like function abstractions. The only difference is that the body

of a procedure abstraction is a statement, rather than an expression.

By the way, many programming languages do not allow functions to be expressed (or declared)

directly: procedures must be used instead. The body of the procedure then includes a special

statement that determines the value to be returned (in ALGOL60 and PASCAL, this statement

looks like an assignment to the procedure identifier!).

Syntax for procedure abstractions is given in Table 2.28. As with functions, we consider pro-

cedures with only a single parameter; but now some more modes of parameter evaluation are

introduced.

(ExPRESSION)
E ::= proc (PD) S,

(PARAM ETER-DECLARATION)

PD ::= var I: T 1 I: T

(STATEMENTS)
S ::= E1(E2)

Table 2.28: Syntax for procedures
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The procedure abstraction 'proc (var 1: T) S' requires its parameter to evaluate to a vari-

able, and I denotes that variable in the body S1. This mode of parameter evaluation is usually

known as "call by reference", but here we refer to it as "variable-mode" parameter evaluation.

The procedure abstraction 'proc (1: T) S' requires its parameter tW be coercible to an

assignable value; then a local variable is allocated and initialized with the parameter value, and

I denotes the variable in the body S1. This mode of parameter evaluation 's usually known as
"call by value", but it should not be confused with the value-mode parameter evaluation that was

considered for function abstractions: that did not involve any local variable allocation. Let us refer

to this mode as "copy-mode" parameter evaluation.

The procedure call statement 'E1 (E-2 )' executes the body of the procedure abstraction produced

by evaluating El, passing the argument obtained by evaluating the parameter E2 .
Note that execution of the procedure body may have an effect on the state, by assignment to

a non-local variable. With variable-mode parameters, there is also the possibility of modifying the
state by assigning to the formal parameter of the abstraction; whereas with copy-mode, such an
assignment merely modifies the local variable denoted by the parameter identifier. Note also that

variable-mode allows two different identifiers to denote the same variable, i.e., "aliasing".
Now for the formal semantics of procedures. The denotations of procedure expressions, param-

eter declarations, and statements are defined in Table 2.29.

The procedure call syntax 'EI(E-2 )' does not give any indication of the mode of parameter
evaluation, so we leave it to the denotation of the parameter declaration to perform any required
coercion of the parameter value. An alternative technique is to let the evaluation of the parameter

expression E-2 depend on a mode component of the value of the procedure expression El.

By the way, the second semantic function for parameter declarations, 'PU, is analogous to the
semantic function VU for variable declarations, explained in Section 2.5.5.

2.5.8 Programs

As discussed in Section 2.3, the semantics of an entire program should be a mathematical represen-
tation of the observable behaviour when it is executed by computers (but ignoring implementation-
dependent details). Typically, this behaviour involves streams of "input" and "output".

By definition, the input of a program is the information that is supplied to it by the user; the
output is the information that the user gets back. However, it is important to take into account not
only what information is supplied, but also when the supply takes place. The main distinction in
conventional programming languages is between so-called "batch" and "interactive" input-output.

With batch input, all the input to the program is supplied at the start of the program. The
input may then be regarded as stored, in a "file". Batch output is likewise accumulated in a file.

and only given to the user when (if ever) the program terminates.

On the other hand, interactive input is provided gradually, as a stream of data, while the
program is running; the program may have to wait for further input data to be provided before it

can proceed. Similarly, interactive output is provided to the user while the program is running, as
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P = (PV o-+ S--i. S)-.

PV = VE FE LV EP

DV =VE FELVE P

EV = Ve6 FE LV E P

E : EXPRESSION - Env -- * S -- EV

£[ proc (PD) S ]=

Ae E Env. up(strictAv E PV.
(A(e' E Env,s E S). .UlPDle'(S]Coverlay~e',e))))

0 P,[PDje)

PD: PARAMETER-DECLARATION -- PV -- S -- Env x S

PV[ val I: T ] = AV E PV. As E S. (binding Iv, s)

PV[ var I: T 1= Al E LV. As E S. (binding I, s)

PV[ I: T ]=AvEPV.AsES.
(Av' E RV. (A(l' E LV, s' E S). (binding 11', assign l'v's'))

(T[ T]s))

([QAle LV. assigned I s, idRv, ±, ±](v))

PU: PARAMETER-DECLARATION - Env -- S - S

PU[ val I = Ae E Env. ids

PU[ var I: T I = Ae E Env. ids

PU[ 1: T l = Ae E Env. TU[T(bound Ie)

8 : STATEMENTS - Env - S o- S

S[ E1 (F,2) I = Ae E Env. As E S. (down a idp)(E[E1Je s)(E[Eje s) s

Table 2.29: Denotations for procedures
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soon as it has been determined.
Note that interactive input-output allows (later) items of input to depend on (earlier) items of

output. For instance, input may be stimulated by an output "prompt".
We may regard batch input-output as merely a special case of interactive input-output- the

program starts, and then immediately reads and stores the entire input; output is stored until the
program is about to terminate, and then the entire output is given to the user.

The essential difference between batch and interactive input-output shows up in connection with
programs that (on purpose) may run "for ever": batch input-output cannot reflect the semantics
of such programs. Familiar examples are traffic-light controllers, operating systems, and screen
editors. These programs might, if allowed, read an infinite stream if input, and produce an infinite
stream of output. (They might also terminate, in response to particular input-or "spontaneously'",
when an error occurs.) Moreover, once an item of output has been produced, it cannot be revoked
by the program (e.g., the traffic-light controller cannot "undo" the changing of a light).

Consider the abstract syntax for input-output statements and programs specified in Table 2.30.
There is nothing in the given syntax that indicates whether the semantics of input-output is
supposed to be batch or interactive. Let us consider both semantics. We restrict items of input
and output to be truth-values and numbers, i.e., the same as SV.

(PROGRAM)

P ::= prog S

(STATEMENTS)

S ::= read F_ ! write E

Table 2.30: Syntax for programs

For batch semantics, we may take the representation of streams to be finite lists. The semantic
equations for programs, and for read and write statements, are given in Table 2.31: our previous
semantic equations for other statements have to be modified to take account of the extra arguments,

but the details are omitted here.
The following proposition confirms that batch output is not observable when program execution

doesn't terminate:

Proposition 37

P[ prog while true do write 0 = P [ prog while true do skip ] = I.

The reason for this is that the denotation of the non-terminating while-loop is given by the least
fixed point of a strict function.

Now for interactive input-output semantics for the same language. See Table 2.32. Let us
first change from 5V" to 5V$ , which represents infinite (and partial) streams. (The only difference
between SV$ and the standard domain construction SV' is that the latter allows I components to
be followed by non-L components.) This change by itself would not make any substantial difference
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In = SV*

Out = SV"

P : PROGRAM - (In o-. Out)

P[ prog Si J = Ai E In. on3(S[SiI(void)(empty,i,T))

3: STATEMENTS -* Env - (S ® In ® Out) o-.(S 0 In ® Out)

S[ read E ] = Ae E Env. A(s E S,i E In,o E Out).
(Al E Loc. [.1,A(v E SV, i' E In). smash(store Iv s, i,o)])

(E[Ele s)(i)

S[ write E ]=AeE Env. A(sES,iE In,oE Out).

(Av E SV. smash(s,i,extend v o))

(JZ[Ele s)

extend = AvESV.[AXE0.(v,T),

A(v' E SV, o E Out). (v', extend v o)]

E SV - Out - Out

Table 2.31: Denotations for programs (batch)

to the semantics of programs: input-output would still be batch, and the above proposition would

still hold.
The essential change is to ensure that an item of output becomes incorporated in the program's

semantics, irrevocably, as soon as the corresponding 'write' statement is executed. There are var-
ious ways of achieving this property: in particular, by usig continuations. Reverting temporarily
to continuation semantics (see Section 2.5.6) we define the interactive semantics of programs as

shown in Table 2.32.

Proposition 38

P'[ prog while true do write 0 1]$

P'[ prog while true do skip .

It is instructive to see how to deal with interactive input-output without using continuations.
Consider the domain 10 defined in Table 2.33, and let statement denotations be given by functions
from environments and stores to 10. Each element of 10 represents a sequence of r-adings and
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SV = SV ® SV. 1.

In = SV

Out = SV

C =S -- In - Out

P' PROGRAM -- In -- Out

P'[ prog S1 ] = S'[S1J(void)(As E S. Ai E In. T)(empty).

S': STATEMENTS - Env --+ C --* C

S'[ read E J = Ae E Env. Ac E C.
V'[EJe (Al E L oc. As E S. A(v E SV, i E In). (c o store 1") s i))

S'[ write E ]=Ae E Env. Ac E C.

1'[Ele(Av E SV. As E S. Ai E In. smash(v, up(c s i)))

Table 2.32: Denotations for programs (interactive, continuations)

writings, ending (if at all) with a state. This might not seem particularly abstract. but notice

that statement denotations must reflect the order in which readings and writing occur, since the
semantics of a program in In -. Out reveals this information when applied to partial inputs.

The semantic equations specified in Table 2.33 illustrate this technique. The fixed point used
in the denotation of 'S ; 52' essentially corresponds to going through the input and output corre-
sponding to S1 until a final state is reached, and then starting S2; similarly for programs. It can
be shown that interactive output is modeled.

Now consider "piping" the output of one program into the input of another, as expressed by

a program construct 'P1 I P2'. With interactive input-output, both programs can be started
simultaneously-but the execution of the second program may have to be suspended to await input
that has yet to be output by the first program. The start of the first program could be delayed

until the second program actually tries to read from its input (if ever), and then execution could
alternate between the two programs, according to the input-output. All these possibilities are
expressed by the same semantic equation:

P[ P1 I P2 I = P[P2J oP[PJ

With batch input-output, the second program does not start until the first one terminates.
As with statements, such sequential execution can be modeled by composition of strict functions
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10 = S E (SV 0- IO)j. E (SV ® 10.).

P: PROGRAM -- In -* Out

P[ progS, ] = 'x(Ah E 10 - In -- Out.
[As E S. Ai E In.T,

Af E SV -1 10. A(v E SV, i E In). h(fy(v))(i),
A(v E SV, io E 10). Ai E In. (v, up(h(io)(i)))])

(S[S](void)(empty))

S : STATEMENTS - Env -- S o-- 10

S[ El := F2 ]=Ae EEnv.AsES.

(Al E Loc. Av E SV. in,(store Ivs))

('[Ele s)(1ZI[E-2 e s)

S[ read E ] = AeE Env. AsE S.

(Al E Loc. in2(Av E SV. up(in 1(store I vs))))

('[F,]es)

S[ write E ]=Ae E Env. As E S.
(Av E SV. in3(v, up(ini(s))))

(7[E2le s)

S[ skip J = Ae E Env. ids

S[ Si; S2 =AeE Env. AsES.
fix';g9 E 10 - 10.

[S[S2Ie,

Af E SV - 10. g cf,
A(v E SV, io E 1O). (v, up(g(io)))])

(;[Si e s)

Table 2.33: Denotations for programs (interactive, direct)
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(the semantic equation for piped programs remains the same, assuming P is defined as for batch
input-output).

2.5.9 Nondeterminism

The final technique illustrated in this chapter is the use of power domains to model nondeterministic
constructs such as "guarded commands" and interleaving.

For our purposes here, it is not necessary to understand the actual structure of power domains.
All that we need to know about a power domain is that it is equipped with a continuous union
operation (associative, commutative, and absorptive), a continuous singleton operation, and that
functions on domains can be extended pointwise to power domains. (Recall the notation adopted
in Section 2.4. We use only the natural, or convex, power domain; the other power domains do not
accurately reflect the possibility of divergence.)

Consider the syntax for guarded statements given in Table 2.34. The intention of 'E -> $I'
is that the statement S1 is guarded by E and may only be executed if E evaluates to true. So
far, this resembles 'if E then SI'; the difference is that guarded statements may be "united"
by the construct 'G [ G2', whose execution consists of executing precisely one of the guarded
statements in G and G2 . Notice that (when E evaluates to a truth-value) the guarded statement

E -> S1 D -,E -> 52

expresses a deterministic choice between S1 and S2, whereas

true -> S, 0 true -> S2

expresses a nondeterinistic choice.

(GUARDED-STATEMENTS)

G ::= E-> S GI D G 2

(STATEMENTS)

S ::= if G fi I do G od

Table 2.34: Syntax for guarded statements

Both the statements 'if G fi' and 'do G od' involve the execution of G, when possible. Let
us regard the former as equivalent to an empty statement when it is not possible to execute G.
With the latter, the execution of G is repeated, as many times as possible.

We take the denotations for statements to be functions from environments and stores to elements
of the power domain S ; these elements represent the non-empty sets of possible states resulting from
statement execution (possibly including 1). The denotations of guarded statements are similar, but
T represents the empty set of states. The semantic equations are specified in Table 2.35. (We do
not need to change the denotations of expressions and declarations, which are still deterministic.)
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Q: GUARDED-STATPMENTS -* Env -- S o-(O ED S4)

Q[ E -> S, ]=Ae E Env. strictAs E S.

(At E T. ift then i. 2(S[SJe s) else in, T)(1I[E]e s)

9[ G1 D G2  =Ae E Env. strictAs E S.[Ax E 0. idoes",

Ap1 E S4. [Az E 0. in2(P),
Ap2 E SK. in2(pI Wa p2)]](g[G1Je s)(g[G2]e s)

S : STATEMENTS -- Env -* S o- S

S[ if G fi ]=Ae E Env. strictAs E S.
[Ax E 0. 4|,idsb](g[G]es)

S[ do G od J = Ae E Env. fix(Ac E So-+ S . strictAg E S.
[Ax E 0. 44j,ext(c)](g[Gje s))

Table 2.35: Denotations for guarded statements

As an illustration of the semantic equivalence that is induced by the above definitions, consider
the two statements S1, S2 shown in Table 2.36. It is obvious that 52 has the possibility of not

terminating; what may be less obvious is that S1 has precisely the same possibilities:

Proposition 39

sisa3 = S[S2].

Thus both statements have the possibility of terminating with the variable 'y' having any (non-

negative) value-or of not terminating. The infinite number of possibilities arises here from the
iferation of a choice between a finite number of possibilities: the possibility of non-termination

cannot be eliminated (c.f. K6nig's Lemma).

X : 0; X : 0;

y :0 0; y : 0;

do x0 -> x 1 do xf0 - x : 1

0 x-O -> y :[y+I C xO -> y : y+1

od D true-> do true -> skip od

od

Table 2.36: Examples of guarded statements S1, S2

However, one could imagine having a primitive statement with an infinite number of possibilities,

excluding non-termination. E.g., consider 'randomize E', which is supposed to set a variable E
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to some arbitrary integer. Here we understand "arbitrary" to mean just that the value chosen is

completely out of the control of the program-it is implementation-dependent. (Thus a particular

implementation might always choose zero, or the successor of the previous choice. Classes of

genuinely-random implementations could be considered as well.)
It 's important to note that our domain of statement denotations above does not contain any

element that can be used for the denotation of an always-terminating 'randomize' statement. In

fact any attempt to express such a set as

as an element of N. always ends up by including IQ.L as well.

So let us omit further consideration of randomizing statements, and proceed to illustrate a tech-
nique known as "resumptions", which is useful for giving a denotational semantics for concurrent

processes.

2.5.10 Concurrency

The language constructs considered so far in this chapter come from conventional programming
languages, designed to be implemented sequentially. Several modern programming languages have
constructs for expressing so-called "concurrent processes", and may be implemented on a "dis-
tributed system" of computers (or on a single computer that simulates a distributed system).

Typically, the processes are executed asynchronously, and they interact by sending messages and

making "rendezvous".
In the denotational semantics of concurrent systems, the concurrent execution steps of different

processes are usually regarded as "interleaved". Although interleaving is a rather artificial concept
when dealing with physically-distributed systems (due to the lack of a universal time scale) it is not

generally possible to distinguish the possible behaviours of proper concurrent systems from their
interleaved counterparts-at least, not unless the observer of the behaviours is distributed too.

The final example of this chapter deals with a very simple form of concurrency: interleaved
statements. The syntax of these statements is given in Table 2.37.

(STATEMENTS)

S ::= S1 1152 I <S>

Table 2.37: Syntax for interleaved statements

The intention with the statement 'S, I I S2' is that S, and S2 are executed concurrently and
asynchronously. If S, and S2 use the same variables, the result of their concurrent execution may
depend on the order in which the "steps" of S are executed in relation to those of S2, i.e., on the
interleaving. Let us assume that assignment statements are single, "indivisible- steps of execution,
so the state does not change during the evaluation of the left- and right-hand sides. The construct
'< S, >' makes the execution of any statement S, an indivisible step (sometimes called a "critical

region").
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Note that when S and S are "independent" (e.g., when they use different variables) an execu-
tion of 'S1 I II S2' gives the same result as the execution of 'Si; S ', or of 'S2; Si'; but in general
there are other possible results.

Now consider statements

S : :, 1

S2 X :- 0; X := x+1.

With all our previous denotations for statements, we have S[Si] = S[S2]. But when statements
include 'S I I S', we expect

S[ S1 i IS 1  S[ S 1 S2

since the interleaving 'x := 0; x :- 1; x :- x+1' of Si with S2 sets x to 2, whereas the inter-
leaving of 'x 1 1' with itself does not have this possibility.

Thus it can be seen that the compositionality of denotational semantics forces S[Si] 0 S[$21
when concurrent statements axe included. The appropriate denotations for statements are so-
called "resumptions", which are rather like segmented ("staccato") continuations. A domain of
resumptions is defined in Table 2.38. The semantic function for statements, S, maps environment
directly to resumptions, which are themselves functions of stores.

Consider p = S[Sile s. It represents the set of possible results of executing the first step of S.
An element inj(s') of this set corresponds to the possibility that there is only one step, resulting in
the state s' (although this "step" might be an indivisible sequence of steps). An element in2(up r, s')
corresponds to the result of the first step being an intermediate state s', together with a resumption
r which, when applied to s' (or to some other state) gives the set of possible results from the next
step of Si, and so on.

Resumptions provide adequate denotations for interleaved statements, as the semantic equa-
tions in Table 2.38 show. However, these denotations are not particularly abstract: e.g., we get
8[ skip 1 # S[ skip; skip ], even though the two statements are clearly interchangeable in
any program. It is currently an open problem to define fully abstract denotations for concurrent
interleaved statements (using standard semantic domain constructions).

The technique of resumptions can also be used for expressing denotations of communicating
concurrent processes (with the "store" component representing pending communications).

We have finished illustrating the use of the main descriptive techniques of Denotationa Seman-
tics: environments, stores, strictness, flags, continuations, power domains, and resumptions. The
various works referenced in the following bibliographical notes provide further illustrations of the
use of these techniques, and show how to obtain denotations for many of the constructs to be found
in "real" programming languages.
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R =S o-(S E (R±. ® S))

S: STATEMENTS -* Env -- R

S[ F := 2 ]=AeE Env. strictAsES.
(Al E LV. Av E RV. Istore I v 4)(S[EJe s)(Z[E-2Je s)

S[ Sj; S2 =Ae EEnv. fix(Af ER--R.ArER.
ext (S[S2Je,

A(r' E R.,s' E S). (f(r'), s')] o r)

(S[SIle)

S[ skip J = Ae E Env. strictAs E S. 449

S[ Si I I S2 =Ae E Env. fix(AgE(RxR)- R.
A(r1 E R, r 2 E R). strictAs E S.
(extfr2, A (r' E R.L 'ES.(~' , r) s')] (rl (s)))

(ext~rl, _L R , S' E S). (g(r', r2), ']r( ))

(S[Sile)(SIS1Je)

S[ < S > =Ae E Env. fix(Ah R -, R. Ar E R.
ext[As E S. Is5,

A(r' E R,5' E S). h(r')(s')] o r)

(StSi je)I

Table 2.38: Denotations for interleaved statements
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2.6 Bibliographical Notes

This final section refers to some published works on Denotational Semantics and related topics,

and indicates their significance.

2.6.1 Development

The development of Denotational Semantics began with the paper "Towards a Formal Semantics"

[52], written by Christopher Strachey in 1964 for the IFIP Working Conference on Formal Language

Description Languages. The paper introduces compositionally-defined semantic functions that map

abstract syntax to "operators" (i.e., functions), and it makes use of the fixed-point combinator. Y,

for expressing the denotations of loops. It also introduces (compound) L-values and R-values, in

connection with the semantics of assignment and parameter-passing. The treatment of identifier

bindings follows Landin's approach [21]: identifiers are mapped to bound variables of A-abstractions.

Strachey's paper "Fundamental Concepts of Programming Languages" [53] provides much of

the conceptual analysis of programming languages that underlies their denotational semantics.

The main theoretical problem with Strachey's early work was that, formally, denotations were

specified using the type-free A-calculus, for which there was no known model. In fact Strachey was

merely using A-abstractions as a convenient way of expressing functions, rather than as a formal

calculus. However, the fixed-point combinator Y was needed (for obtaining a compositional seman-

tics for iterative constructs, for instance). Because Y involves self-application, it was considered to

be "paradoxical": it could be interpreted operationally, but it could not be regarded as expressing
a function. By 1969, Dana Scott had become interested in Strachey's ideas. In an exciting col-

laboration with Strachey, Scott first convinced Strachey to give up the type-free A-calculus; then

he discovered that it did have a model, after all. Soon after that, Scott established the Theory

of Semantic Domains, providing adequate foundations for the semantic descriptions that Strachey

had been writing.

The original paper on semantic domains by Scott [46] takes domains to be complete lattices
(rather than the cpos used nowadays). Domains have effectively-given bases; Cartesian product,

(coalesced) sum, and continuous function space are allowed as domain constructors; and solutions

of domain equations are found as limits of sequences of embeddings. A domain providing a model

for self-application (and hence for the A-calculus) is given, and a recursively-defined domain for

the denotations of storable procedures is proposed. (For references to subsequent presentations of

domain theory, see [181.)
In a joint paper [48], Scott and Strachey present what is essentially the approach now known as

Denotational Semantics (it was called "Mathematical Semantics" until 1976). The paper establishes

meta-notation for defining semantic functions, and uses functional notation-rather than the A-

calculus-for specifying denotations. Here, for the first time, denotations are taken to be functions
of environments, following a suggestion of Scott. The abstract syntax of finite programs is a set

of derivation trees, although it is pointed out that this set could be made into a domain: then

semantic functions are continuous, and their existence is guaranteed by the fixed point theorem
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(see also [47], where partial and infinite programs are considered).
The notion of "characteristic domains" was introduced by Strachey in [54], where characteristic

domains are given for ALGOL60 and for a pedagogical language (PAL).

The use of continuations in denotational semantics was proposed by Christopher Wadsworth,
and reported in a joint paper with Strachey [55]. The present author was one of the first to exploit

the technique, in a denotational description of ALGOL60 [28].
By the mid-1970's, sufficient techniques had been developed for specifying the denotational

semantics of any conventional (sequential) programming language. Moreover, John Reynolds [44]
and Robert Milne [22] had devised a way of proving the equivalence of denotational descriptions
that involve different domains (e.g., direct and continuation semantics for the same language).
Wadsworth had shown the relation between the computational and denotational semantics of the
A-calculus [59] (see also [36]). The present author had constructed a prototype "semantics imple-
mentation system" (SIS), for generating implementations of programming languages directly from
their denotational descriptions [29, 30, 31]. Strachey's inspiration was sorely missed after his un-
timely death in 1975; but there was confidence that denotational semantics was the best approach
to programming language semantics, and that it would be a routine matter to apply it to any real
programming language.

Then the increasing interest in concurrent systems of processes led to the development of pro-
gramming languages with non-deterministic constructs. An early treatment by Robin Milner [25]
introduced a technique using so-called "oracles", but did not give sufficiently abstract denotations:
for instance, non-deterministic choice was not commutative. Then Gordon Plotkin showed how to
define power domains [40]. The introduction of power domains required domains to be cpos, rather
than complete lattices. Moreover, for domains to be closed under power domain constructions, the
cpos had to be restricted to be so-called SFP objects: limits of sequences of finite cpos (equivalent
to the bifinite cpo's, see [18]). Much of Plotkin's paper is devoted to establishing the SFP frame-
work. Also, the technique of "resumptions" is introduced, and used to define the denotations for
some sinile parallel programs.

Mike Smyth gave a simple presentation of Plotkin's power domains [49] (and introduced a
"weak" power domain). Matthew Hennessy and Plotkin together defined a category of "non-
deterministic" domains [20], and showed that the (Plotkin) power domain, D, of a domain D is
just the free continuous semi-lattice generated by D. They also introduced a tensor product for non-
deterministic domains, and obtained full abstractness for a simple (although somewhat artificial)
parallel programming language. Krzysztof Apt and Plotkin [3] related the Plotkin power domain
to operational semantics; they showed that Smyth's weak power domain (of states) corresponds to
Dijkstra's predicate transformers. Plotkin [41] generalized power domains to deal with countable
non-determinism. Samson Abramsky has shown [1] that the Plotkin power domain gives fully
abstract denotations when observable behaviour is characterized by classes of finite experiments.
There has also been work on power domains using complete metric spaces [2].

Despite all the above works, it is debatable whether the denotational treatment of concurrency
is satisfactory. There are difficulties with getting reasonable abstractness of denotations when
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using resumptions. Moreover, the use of power domains gives an unwelcome notational burden.

In contrast, Structural Operational Semantics (illustrated in [24]) extends easily from sequential

languages to concurrency.
Another problem with the applicability of Denotational Semantics concerns the pragmatic as-

pects of denotational descriptions. For "toy" languages, it is quite a simple matter to "lay the
domains on the table" (following [54]), and to give semantic equations that define appropriate (but
not necessarily fully abstract) denotations. However, the approach does not scale up easily to
"real" programming languages, which (unfortunately) seem to require a large number of complex
domains for their denotational semantics. Partly because the semantic equations depend explicitly
on the domains of denotations, it can be extremely difficult to comprehend a large denotational

description.

A related problem-is that it is not feasible to re-use parts of the description of one language
(PASCAL, say) in the description of another language (MODULA2, for instance). Analogous problems
in software engineering were alleviated by the introduction of "modules". Denotational Semantics
has no notation for expressing modules. In fact if the definitions of the domains of denotations were
to be encapsulated in modules, it would not be possible to express denotations using A-notation
in the semantic equations: one would have to use auxiliary operations, defined in the modules, for
expressing primitive denotations and for combining denotations. Thus it seems that a high degree
of modularity is incompatible with (conventional) denotational semantics.

An aggravating factor, concerning the problem of (writing and reading) large denotational
descriptions, may be that the intimate relation between higher-order functions on domains and
computational properties is not immediately apparent. (For 'example, with non-strict functions,
arguments may not need to be evaluated.) It is difficult for the non-specialist to appreciate the
abstract denotations of programming constructs.

The effort required to formulate a denotational semantics for a real programming language is
reflected by the lack of published denotational descriptions of complete, real programming lan-
guages. Efforts have been made for SNOBOL [56], ALGOL60 [28], ALGOL68 [221, PASCAL [58],
and ADA [11]. In general, these descriptions make some simplifying assumptions about the pro-
gramming language concerned; they also omit the definitions of various "primitive" functions, and
use numerous notational conventions whose formal status is somewhat unclear. (Of course, much
the same-and other-criticisms could be made of alternative forms of semantics.)

Hope for the future of denotational semantics lies in the recent popularization of two languages
that have been designed with formal (denotational) semantics in mind: Standard ML [19], and
Scheme [43]. Although the denotational descriptions of these languages are not used formally as
standards for implementations, they do show that it is possible to give complete descriptions of
useful languages.
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2.6.2 Exposition

There are several expository works that explain the basic notions of Denotational Semantics, and
give examples of the prevailing techniques for choosing denotations:

Bob Tennent (57] provides a basic tutorial introduction, containing a semantic description of

Reynold's experimental language GEDANKEN and a useful bibliography.

The epic work by Milne and Strachey [23], completed by Milne after Strachey's death, con-
tains careful discussions of many techniques for choosing denotations, including less abstract "non-
standard" denotations. The examples given are related to ALGOL68. It is a valuable reference for

further study of Denotational Semantics.

Joe Stoy's book [50] is partly based on Strachey's lectures at Oxford; consequently, scant at-
tention is paid to the syntactic constructs of later programming languages, such as PASCAL. The

foreword by Scott gives an detailed appreciation of Strachey and his work.

The book by Mike Gordon [16] takes an engineering approach: it does not explain foundations
at all. The techniques illustrated are adequate for the description of most Pascal-like programming

languages.

The introductory book on Denotational Semantics by Dave Schmidt [45] includes a rather
comprehensive description of domain theory (including power domains). The book covers a number
of incidental topics, such as semantics-directed compiler generation. and there is a substantial

bibliography.

Unfortunately, there is considerable variation in the notation (and notational conventions) used
in the works referenced above: almost the only common notational feature is the use of 'A' for
function abstraction and juxtaposition for function application! The reader should be prepared to
adapt not only to different symbols used for the same constants and operators, but also to different
choices of what to regard as primitive and what to define as auxiliary notation. (N.B. the notation
presented and used in this chapter is not an accepted standard.)

2.6.3 Variations

The approach to semantics presented in this chapter, whose development is sketched above, may be

regarded as the main theme of Denotational Semantics: abstract syntax, domains of denotations,
semantic functions defined by semantic equations using A-notation. Some significant variations on

this theme are indicated below.

Initial Algebra Semantics

(This approach was sketched in Sections 2.2 and 2.3.) Initial Algebra Semantics was developed
by Joseph Goguen, Jim Thatcher, Eric Wagner, and Jesse Wright [15]. Although it is formally
equivalent to denotational semantics, it has the advantage of making it explicit that abstract

syntax is an initial algebra, and that semantic functions are homomorphic. Explicit structural

induction proofs in denotational semantics can here be replaced by appeals to initiality. It is easy
to extend Initial Algebra Semantics to continuous algebras, so as to allow infinite programs, whereas
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with denotational semantics, abstract syntax has to be changed from sets to cpos. An additional
benefit of Initial Algebra Semantics is that one always names the domains of denotations; this
seems to encourage the specification of denotations as compositions, rather than as applications
and abstractions (but this is only a matter of style). Initial Algebra Semantics has not yet been
applied to real programming languages.

The French school of Algebraic Semantics [17] has concentrated on the semantics of program
schemes, rather than of particular programming languages. (See [9].)

OBJ

Goguen and Kamran Parsaye-Ghomi show in [14] how the algebraic specification language OBJT
(a precursor of OBJ2 [13]) can be used to give modular semantic descriptions of programming
languages. Their framework is first-order, and not strictly compositional; but higher-order algebras,
which give the power of A-notation in an algebraic framework [39, 42, 12], could be used instead of
OBJ, with similar modularity.

Despite the use of explicit modules, the semantic equations given by Goguen and Parsaye-Ghomi
are still sensitive to the functionality of denotations. The approach has not been applied to real
programming languages.

VDM

The Vienna Development Method, VDM [5], has an elaborate notation, called META-IV, that can
be used to give denotational descriptions of programming languages. Although there are quite a
few variants of META-IV, these share a substantial, partly-standardized auxiliary notation that
provides a number of useful "flat" domain constructors (e.g., sets, maps) and declarative and
imperative constructs (e.g., let-constructions, storage allocation, sequencing, exception-handling).
However, this auxiliary notation is a supplement to, rather than a replacement for, the A-notation.
The foundations of META-IV have been investigated by Stoy [51] and Brian Monahan [27].

In contrast to Denotational Semantics, VDM avoids the use of high-order functions and non-
strict abstractions, in order to keep close to the familiar objects of conventional programming.
(Andrzej Blikle and Andrzej Tarlecki [7] went even further, and advocated avoidance of reflexive
domains.) But as in Denotationai Semantics, there are severe problems with large-scale descriptions,
due to the lack of modularity. The fact that it has been possible to develop semantic descriptions of
real programming languages such as CHILL [81 and ADA [6] in (extended versions of) META-IV is a
tribute to the discipline and energy of their authors, rather than evidence of an inherent superiority
of META-IV over Denotational Semantics.

Action Semantics

Action Semantics [38, 37, 33, 60, 35, 32] is something of a mixture of the denotational, algebraic,
and operational approaches to formal semantics. It has been under development since 1977, by
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the present author and (since 1984) David Watt. A brief summary of the main features of Action

Semantics is given below.

The primary aim is to make it easier to deal with semantic descriptions of "real" programming

languages. Factors that have been addressed include modularity (to obtain ease of modification,

extension, and re-use) and notation (to improve comprehensibility).

Action Semantics is compositional, just like Denotational Semantics. The essential difference

between Action Semantics and Denotational Semantics concerns the entities that are taken as the

denotations of program phrases: so-called "actions", rather than functions on semantic domains.

Actually, some actions do correspond closely to functions, and are determined purely by the re-

lation between the "information" that they receive and produce. But other actions have a more

operational essence: they process information gradually, and they may interfere (or collaborate)

when put together.

The standard notation for actions is polymorphic, in that actions may be combined without

regard to what "kind" of information they process: transient or stored data, bindings, or communi-

cations. Furthermore, the different kinds of information are processed independently. This allows

the semantic equations for (say) arithmetical expressions to stay the same, even when expressions

might be polluted with "side-effects" or communications.

The fundamental concepts of programming languages (as identified by Strachey, and implicit

in most denotational descriptions) can be expressed straightforwardly in action notation. The

comprehensibility of action semantic descriptions is enhanced by the use of suggestive words, rather
than (to prograzimers) cryptic mathematical symbols: in the usual concrete representation of action

notation, for example, the action combinator expressing sequential performance is written as infixed

'then'. The notation is claimed to be a reasonable "compromise" between previous formal notations

and informal English.

The theory of actions includes some pleasant algebraic laws. However, the basic understanding

of actions is operational, and action equivalence is defined by a (structural) operational seman-
tics [32]. Action notation may also be defined denotationally, and used as auxiliary notation in

conventional denotational descriptions, as illustrated in [34].

At the time of writing, it is not apparent whether Action Semantics will turn out to be any
more palatable than Denotational Semantics to the programming community.
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